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Abstract

Relative orbit elements (ROEs) based on a circular chief satellite orbit are er-

roneous when applied to a perturbed, non-circular reference orbit. In those situa-

tions, the ROEs will encounter geometric instability and drift. To counter this, a

set of time-variant ROEs have been derived to describe the relative orbit for both

the unperturbed, elliptical chief and the perturbed, circular chief. A highly coupled

relationship is found that describes the relative trajectory to higher accuracy when

compared to numeric integration. To show the applicability of the ROEs to formation

design, methods to initialize a stationary relative orbit are detailed and an algorithm

for ROE-based guidance and navigation is proposed. The results provide a method

to predict the relative motion, while examining time-varying parameters of the mo-

tion. Eccentricity effects are shown to induce severe time-variance to the system and

introduce a level of mathematical abstraction. Perturbing J2 effects are shown to

introduce periodic effects and compound the secular variations to the circular ROEs.
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Osculating Relative Orbit Elements Resulting from

Chief Eccentricity and J2 Perturbing Forces

I. Introduction

Relative satellite motion has seen vast usage and progress in recent years. Nu-

merous well-defined solution sets mapping the motion of a reference satellite, the

chief, with a target satellite, the deputy, have been developed. Dynamic models of

satellite motion strongly influence close proximity operations including rendezvous

and docking. A past example of proximity operations exists in the Apollo era, during

which dynamic algorithms were utilized for modular rendezvous [1]. However, these

operations were conducted under the assistance of astronauts in the loop, not allow-

ing for full autonomy. The idea of autonomous close proximity operations correlates

with and motivates the attempt to further generalize the dynamics of relative satellite

motion.

As a vital role in the Apollo program, these special operations were studied

primarily for docking procedures. Current operations still maintain focus on the

same docking and rendezvous problem. In order to actively control this maneuver, the

relative separation between the two bodies is gradually forced to zero. For example,

the resupply, modification, and construction of the International Space Station is

effected by the use of autonomous unmanned orbit transfer vehicles, relying heavily

on control of the rendezvous problem [2].

Formation flight is another defining example of the application of dynamic mod-

els for relative motion between two or more satellites. By utilizing several simple and

smaller satellites, the size and complexity of single large spacecraft missions can be

reduced. For example, a reconnaissance satellite scaled to support a large aperture

could be reduced to a formation of multiple smaller bodies to support the same mis-

sion [3]. Failsafe options are also inherent in formation flight, in that a catastrophic
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failure in one subsystem does not necessarily imply mission failure; this is known as

”gradual degradation.” Dynamic models of relative motion can be applied to for-

mations by selecting a reference satellite and propagating the relative equations of

motion simultaneously for each deputy, setting a design point via initial conditions.

Any model used in real-time application will tend towards a trade between

complexity and accuracy. The representation of every possible force on a body is

impossible, and also unnecessary in practice. The model can be looked at in terms of

kinematic and kinetic terms. The kinematic terms will include the differential equa-

tions mapping the motion, while the kinetic terms can be thought of as forcing terms

to the motion. From a deterministic standpoint, the kinematic part of the model can

be found, while the forcing terms are set and assumed for the application. More than

likely, the forcing terms will be analytically expressed through kinematic variables,

implying that the inclusion of various forces will directly impact the coupling and

complexity of the differential equations of motion for the model. The assumptions

made in each model will have a substantial mission impact. Software constructed

in accordance with analytical Newtonian dynamics can often be implemented in an

autonomous loop. In this regard, there is trade off between model simplicity and

dynamical error in the software. In addition, the simplicity of the model drives the

computing power needed to numerically solve the differential equations. This would

not be a problem if a generalized analytical solution of relative satellite motion could

be derived; however, the stochastic perturbations of spaceflight allow only for approx-

imations and numerical solutions based on a priori operations.

Inherent in these models are assumptions constraining the orbit of the chief, and,

in addition, the proximity between the two satellites. The most common assumptions

are those required for the linearization of the model derived by Clohessy and Wilt-

shire [4] (HCW): a circular chief, unperturbed two-body Keplerian dynamics, and

close proximity. The HCW model often manifests itself with respect to rendezvous,

docking maneuvers, and the dynamics of satellite clusters [5], but the linearization

carries with it limitations in real world applications.
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Of high importance to the present study is one particular realization of the HCW

solution, which is the parameterization of the resulting trajectory by six relative orbit

elements (ROEs). The HCW model will be discussed in great detail later in this

study, along with the derivation of the ROEs and their utility.

The linear time-invariant ordinary differential equations of the HCW formula-

tion allow for an elegant closed form solution. A fallout of the HCW model shows

that the relative orbit between the deputy and the chief will be an ellipse with a semi-

major axis that is twice the semi-minor axis (a 2x1 ellipse) when projected into the

orbital plane of the chief. The previously mentioned ROEs provide an instantaneous

snapshot of the relative orbit that describes the size, shape, and orientation of the

projected relative ellipse. The derivation of the ROEs is performed under the iden-

tical assumptions as the HCW model. The inclusion of orbital perturbations to the

HCW model represents an insertion of non-linearity and time-variance to the ROEs.

In that the ROEs are linear and non-linear combinations of the relative state vector

and a stand-alone parameterization, the question stands as to what impacts are made

on the ROEs when operating with a perturbed or non-circular chief. These resulting

relative orbit elements are, in the context of this study, defined as osculating relative

orbit elements. To increase the utility and applicability of the relative orbit element

parameterization, the osculating relative orbit response to both the relaxation of the

unperturbed motion assumption and the dynamics of the non-circular chief is the aim

of the current study. The following section provides detail on the individual aspects

of the study.

1.1 Problem Statement

The purpose of this study is to develop numerical and analytical results for

perturbations in the relative orbit elements initiated by chief eccentricity and the J2

zonal harmonic. The study will be divided into two primary phases, investigating the

eccentricity and J2 effects separately, followed by proposed applications.

3



1.1.1 Phase One: Osculating ROEs Perturbed by Chief Eccentricity. The

first phase will be a look at how the relative orbit elements vary as a result of a

non-circular chief. Numerically integrated two-body Keplerian motion (2BP) will be

assumed as truth, with the 2BP state vector numerically substituted as the arguments

for the ROE analytic functions. Stationary orbits will be primarily investigated.

Using the Yamanaka-Ankersen (YA [6]) state transition matrix for relative motion,

full expressions for the ROEs will be derived as a function of initial conditions. The

objective of this exercise is to determine the validity and applicability of ROEs for

geometric visualization of the unperturbed relative orbit.

1.1.2 Phase Two: Osculating ROEs Perturbed by the J2 Harmonic. Ignoring

atmospheric drag, the spherical central body assumption in the Clohessy-Wiltshire

equations serves as a primary error source. The second phase, following in a similar

fashion as Phase One, will examine the behavior of the ROEs for a circular chief

perturbed by the J2 harmonic. Having been well documented in the literature as a

well-behaved model for the J2 perturbed chief, the Schweighart-Sedwick [7] model is

fully utilized to derive analytical expressions for the ROEs as a function of initial

conditions. The Gim-Alfriend [8] model will be used as a purely analytical study to

understand the physical effects. Being that the ROEs are a HCW realization, baseline

comparisons are made to the unperturbed HCW model.

1.1.3 Applications of Osculating ROEs.

1.1.3.1 Stationary Orbit Initialization. To provide a means of for-

mation installation utilizing ROEs, sets of initial conditions to allow for stationary

relative orbits is derived using period matching and methods of J2 invariance.

1.1.3.2 Guidance and Maneuver. As an application of the ROEs,

a guidance algorithm is proposed to modify the orbit using osculating ROEs. The

4



purpose of this study is to introduce the concept and applicability of controls to

osculating ROEs.
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II. Background

The relative motion between two bodies is not a new concept. More than likely, the

mapping of the motion of one object compared to that of another is a daily occurance.

Walking side by side, driving on a highway, running along a track; the examples are

endless. Luckily, rather than free will driving the motion of one body, the differential

equations of orbital mechanics determine the relative trajectories. While the assump-

tion of Keplerian motion greatly simplifies the governing laws, various perturbations

can increase the complexity of the dynamical models. This background will provide

an overview of the past and current state of the art. Section 2.1 will provide historical

examples of relative motion applications. Sections 2.2 to 2.4 will provide the basic

background and reference frames needed to understand the mathematics in the clas-

sical ROE expressions. Finally, Section 2.5 will discuss the impact of the non-circular

chief and the J2 perturbation on relative satellite motion.

2.1 Relative Satellite Motion Throughout History

2.1.1 Historical Examples. Between June of 1983 and August of 2005, a

total of 57 shuttle missions utilized one or more forms of close proximity operations

successfully [9]. The objectives of these operations vary from formation maintenance

to final docking with a desired chief. Prior to these maneuvers, experiments to validate

the ability of a human eye to track and maintain manual control of a docking sequence

were performed on Mercury missions. Following the Mercury Program, Gemini set

forth and established a solid foundation for the future of human rendezvous. Good-

man states that the most significant accomplishments of the Gemini Program with

respect to rendezvous operations included high and low orbit coelliptic rendezvous, or-

bital night and day docking, optical measurement rendezvous, conjunctive countdown

for the maneuver from both chief and deputy perspective, and multiple rendezvous

operations while staying in a propellant budget [9]. The Apollo Program established

rendezvous operations as methodical techniques, using several missions to practice lu-

nar landing. As a side note, the idea of lunar rendezvous was not a new thought at this
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time; one of the first accounts of relative motion model development is Hill’s [10] lunar

equations: his attempt to describe relative motion in the Earth-Moon-Sun system.

Moving the focus to that of formation flying, the size, cost, and complexity

of many classes of missions can be greatly reduced by utilizing a number of smaller

satellites. Using multiple satellites allows multi-tasking within the formation. In the

event of a catostrophic failure in one of the deputy satellites within the formation,

adjustments can be made to compensate for the loss. [3]. Examples of formation

flight include the Orion program as a proof of concept for GPS based relative nav-

igation, and the ESA Cluster mission for magnetospheric studies. Stationkeeping

requirements for formation control tend to be on a low order of required thrust. This

has led to direct development of electric thrusters utilizing electromagnetic as well as

electrostatic forces [11]. A formation design will specify initial conditions in such a

way to satisfy the mission requirements. For example, a circular in-plane formation

will be bounded by specifying the in-track and cross-track states as a function of the

radial states. While specifying these values limits the the initial degrees of freedom (in

this case, only having two initial conditons to choose), the motion is deterministically

known and the free initial conditions can be used to set the period and phasing of the

deputy [11].

2.1.2 Model Development. Whether having been applied to rendezvous

operations or to the control of a formation, the idea of relative motion models has

been widely used throughout the history of the space program. The history of model

development in this field is an interesting study in various attempts at first order

linearizations, linearized state transition matrices, incorporating various orbital per-

turbations, and increasing model fidelity. In fact, the history of model development

can almost be seen as a survey of the state transition matrices derived over the years.

The idea of propagation of an initial state to a desired time through determinstic

dynamics is quite popular in both theory and practice. The popularity is of course

due to accuracy without time-consuming and computationally expensive numerical
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integration. The initiation of a state transition matrix depends on the linearization

inherent in the model. Moreover, the independent variable used in the propagation

is of extreme importance. For example, if time is used then certain states may be

poorly represented near perigee without the appropriate time step; however, if true

anomaly is used, complicating definite integrals will show themselves. A brief survey

on the properties of state transition matrices can be found in Appendix A. Despite

the broad definitions of these models, Carter [12] proposes three classifications of

linearized models

1. Inertial or rotating reference frames

2. Linearizing the central force field to introduce a gradient to the equations of

motion, or linearizing orbital parameters

3. Nominal reference orbit

Although proving more abstract to view initially, the rotating frame is employed

the most often as a means to visualize system behavior in the vicinity of the chief.

More specifically, the linearization of an inverse square gravity term (µ/r2) yields

the most well known relative motion model in the field: Clohessy and Wiltshire [4],

which is discussed in great detail in Section 2.3. Limitations of this model are a

result of the linearizations made to derive the closed form solution. Constraints such

as a circular chief, proximity assumptions, and unperturbed motion limit the long

term applications of the model. The circular chief was expanded to second-order

truncation by Karlgaard and Lutze using the method of multiple scales in spherical

coordinates [13] with significant increase in accuracy over HCW.

The circular chief assumption is highly limiting, most paramount in that a pure

circular orbit is not plausible. For missions involving vehicle servicing or sample re-

turn [6], the chief orbit is most often not circular. A dominant downside to relaxing

the circular chief assumption is the transition from a time-invariant system to a time-

varying system, in that a spacecraft’s dynamic rates are explicit functions of time.

Realizing the future impact, in the decade following the Clohessy-Wiltshire publica-
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tion, an independent effort was undertaken by Lawden [14] along with Tschauner and

Hempel [15]. Tschauner and Hempel were pursuing the closed-form solution for an

arbitrary elliptic chief, while Lawden was attempting to describe the primer vector

with respect to optimal trajectories. The two models proved to be nearly identical,

but cumbersome with the inclusion of the below integral [12]

I =

∫
dθ

sin2 θ(1 + e cos θ)2
(2.1)

where θ is the true anomaly of the chief. The integral in Eq.(2.1) is obviously singular

for true anomalies of integer π multiples. Carter later transformed this integral to the

form [16]

J =

∫
cos θdθ

(1 + e cos θ)3
(2.2)

which remains nonsingular. More recently, in 2002 Yamanaka and Ankersen [6] used

basic orbital mechanics relations to provide a solution to this integral as a function

of orbital angular momentum. The Yamanaka-Ankersen model will be discussed in

more depth further in Section 3.1.2.

Alfriend and Yan contend [17] that for the nearly thirty years following the

Tschauner-Hempel and Lawden derivations, little work was done in the field. Some

work such as Carter’s reformulation of the singular integral [16] was performed, but

it was not until the concept of satellite formation flight was popularized in the late

1990s and early 2000s that the quest for model fidelity was pursued. The quest for

high fidelity in the model is a direct consequence of desired long term accuracy. Most

often, the unperturbed Keplerian orbit assumption is made to soften the mathemat-

ics. However, for low Earth orbits (LEO), air drag and oblateness impact the orbit

significantly (See Sections 2.5.1 and 2.5.2 for specifics on the impact on relative mo-

tion).

A dominating perturbation to consider for relative motion is the J2 effect. Mak-

ing the assumption of a circular chief, Schweighart and Sedwick [7] incorporated an

orbit averaged J2 modification to the classic HCW model that captures the effects very
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well. The HCW equations have also been further modified to include both linear [18]

and quadratic [19] drag effects. Chen and Jing have recently developed differential

equations including both air drag and J2 on the arbitrary elliptical chief [20] using

Lagrangian dynamics, but has no closed form solution.

Modeling the elliptical chief is significantly more challenging than the circular,

reinforced by the fact that the Chen-Jing model does not have a closed form solution.

In recent literature, the concept of orbital element differences to describe the relative

motion has come to light. Rather than expressing the trajectory in Cartesian coordi-

nates (x, y, z), the more intuitive idea of using the difference in the chief and deputy

classical or non-singular orbital elements can be used to propagate to a future state.

Alfriend has shown that relative motion theories using these states tends to higher

accuracy than using a Cartesian or curvilinear frame [21]. In this manner, the com-

plexity of the model increases significantly if the instantaneous orbital elements are

used, and is simplified if the model operates in mean orbital element space. Schaub

makes use of this in [22] with the propagation existing in mean orbital element space.

Hamel and Lafontaine [23] derive a time-varying state space form using these differ-

ences, but rely on an estimated time of flight solution. Gim and Alfriend [8] derive

a state transition matrix that progates either the initial Cartesian conditions or the

initial orbital element differences to a desired time using either the mean or osculating

J2 effect. The GA model is of significant importance to the analytical investigation

in this study and is described in depth in Section 3.1.1.

There do exist approaches to mapping the relative motion other than solving

ordinary differential equations. For example, Wiesel applies Floquet theory in [5] to

the relative motion problem. In this work, Wiesel incorporates all zonal harmonics to

the HCW model and produces a model with two modes that are linear in time, and

completley describes the solution by a periodic vector and a periodic modal matrix.

As another example, work done by Kolemen and Kasdin [24] introduces eccentricity as

a perturbation to the linearized HCW model using Hamiltonian mechanics. Another

non-traditional solution is that of Vadali [25] and Sengupta, Vadali, and Alfriend [26]

10



in which the motion of both the chief and deputy are normalized by their respective

radii and projected onto a unit sphere. Following the projection, spherical trigonome-

try reveals an exact kinematic relation, and is found to be accurate for relative ranges

of up to approximately 160 km [17].

In a most recent effort at the Air Force Institute of Technology (AFIT), Kirk

Johnson [27] applied a ”Virtual Chief” method to the relative motion problem. A

circular virtual chief on an orbit known a priori whose orbital elements are identical

to those of the chief with the exception of the zero eccentricity is propagated. The

motion of the physical chief and deputy are propagated in accordance with HCW

dynamics with respect to the virtual reference. The coupling of linearization errors of

both the chief and deputy with respect to the HCW propagation introduced significant

error when compared to two body dynamics. However, the possibility of retaining

higher-order terms in the set-up of the model may increase the accuracy of the model.

Johnson also proposed in his thesis a set of six parameters that defined the motion of

the VC trajectory with respect to geometry, drift, phasing, periodicity, and skewness.

As a side study to this thesis, the conversion of these parameters to ROEs under a

circular assumption is presented in Appendix E.

Linearizations made also impact the physical space of the model; for example,

an initial condition on relative displacement for one model does not necessarily cor-

respond to an initial condition for numerical integration. Therefore, initial condition

matching has also populated the literature surrounding this topic. Of particular in-

terest is the concept of creating a bounded, periodic relative orbit by specifying initial

conditions. The problem resulting from this is an initial condition in one linearized

model does not necessarily correspond to the same condition in another linearized

model. Inalhan, Tillerson, and How present an algorithm to initialize the velocity

space as a function of position at any point in the orbit [28]. Gurfil has recently

adapted the periodicity problem in terms of energy matching [29], which allows ve-

locity to be extracted from a quadratic expression. In Schaub’s text [30], an in-depth

discussion is made concerning period matching and J2 invariant relative orbits. From
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this brief survey, the overarching method of initial condition matching is in the form

of maintaining equal periods between the two orbits. In some cases this may relax to

equal semi-major axes; however, in the presence of the J2 disturbance, short-period

oscillatons in the chief and deputy semi-major axes will modify the period. Moreover,

in the presence of atmospheric drag, the decay of the orbit’s energy will also challenge

energy matching between the chief and the deputy.

2.2 Coordinate Frames

Now being familiar with the importance and applicability of relative satellite

motion, it is now necessary to introduce the environment which the majority of models

describe.

2.2.1 Inertial Reference Frame. A geocentric reference frame will be used for

the purpose of the current study. The Earth-centered-inertial frame originating from

the center of the Earth is the frame of choice. Seen in Fig. 2.1, the Î vector is in the

direction of the vernal equinox, the K̂ vector is vertical through the north pole, and

the Ĵ vector is orthogonal eastward to Î and lies in the Equatorial plane. Serving as

one of the most common frames in orbital mechanics, it is deemed “inertial enough.”

Slight changes occur in the location of the vernal equniox and in the equitorial plane;

however, speficiation of a certain epoch often implies an inertial system.

2.2.2 Local Vertical-Local Horizontal. The majority of the relative motion

models studied express their solution in the local-vertical, local-horizontal (LVLH)

frame. This is a frame that assumes the satellite is a point mass and rotates at the

same angular rate as the satellite in its orbit. For example, a LVLH frame attached

to an unperturbed circular chief will rotate exactly at the mean motion, while a

LVLH frame attached to an unperturbed non-circular chief will rotate at the time

derivative of the true anomaly. Another term for this frame, and used interchangably

throughout this study, is the RIC (radial, in-track, cross-track) frame. The radial
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Figure 2.1: Earth Centered Inertial Reference Frame

(ôr) axis is in the direction of the position vector from the center of the Earth to the

satellite, positive outward. The cross-track (ôh) axis is parallel to the orbital angular

momentum vector in the orbit normal direction. The in-track (ôθ) axis completes the

orthogonal set. Equation 2.3 expresses the LVLH vectors mathematically, following

Schaub [22].

ôr = ~r/r

ôh = ~h/h

ôθ = ôh × ôr

(2.3)

where ~r is the position vector from the center of the central body to the chief, ~h is

the specific angular momentum vector (~h = ~r× ~̇r), and the unbolded scalars are the

2-norm of the respective vectors. Figure 2.2 provides a visualization of the reference

frame

The location of the deputy in the relative LVLH frame must now be discussed.

The chief, although constantly moving and rotating, is kept at the origin of the

frame. The position vector from the chief to the deputy is denoted as ρ, and its
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Figure 2.2: Local Vertical Local Horizontal Reference Frame

time derivative as ρ̇. The Cartesian components of the relative position and velocity

vectors are expressed in the radial (x), in-track (y), and cross-track (z) directions. For

this study, the following notation in Eq. 2.4 is used for the relative position vector

~ρ =


x

y

z

 (2.4)

The relative velocity vector is presented similarly, only using scalar relative velocity

components where the relative position states are. Figure 2.3 provides a visualization

of the deputy’s location relative to the chief. It is important now to note that even

though a time history of a relative orbit will show movement around the origin, the

deputy is in reality not orbiting around the chief. The central body remains the source

of the primary gravitational force field.

2.2.3 Curvilinear Reference Frame. Similar to the LVLH frame described in

2.2.2, the curvilinear frame is nearly identical in form. The Gim-Alfriend model uses
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Figure 2.3: Relative Position Vector in the LVLH Frame

curvilinear coordinates to obtain more accurate results [8]. The calculated states still

represent the same physical phenomenon, and may still be used for ROE substitution.

The x coordinate is taken as the difference in radii between the chief and the deputy,

the y and z coordinates are taken as curvilinear distances along and perpendicular

to an instantaneous imaginary circle on the reference orbital plane. In this sense, the

relative position vector can be thought to “bend” along the trajectory.

2.3 The Clohessy-Wiltshire Model

The most famous relative motion model is that of Clohessy and Wiltshire [4]. As

the HCW model is the basis for the relative orbit element realization, the following

section presents a beginning to end derivation and trend analysis as discussed in

Vallado [31].

2.3.1 Derivation. To begin the derivation of the HCW model, a problem

statement is first defined. It is desired to determine the analytical solution for the

relative motion of the deputy with respect to a circular chief. The inertial chief and

deputy position vectors are denoted as ~rc and ~rd, respectively. The inertial relative
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range vector (i~ρ) is now

i~ρ = ~rd − ~rc (2.5)

If one desires to obtain the equations of motion, the inertial relative acceleration

vector is needed (Eq. 2.6)

i~̈ρ = ~̈rd − ~̈rc (2.6)

Assuming unperturbed Keplerian two-body motion, the individual accelerations are

well known and can be represented as Eq. 2.7

~̈r = −µ~r
r3

(2.7)

Now, substituting Eq. 2.7 in Eq. 2.6, the differential equation becomes

i~̈ρ = −µ~rd
r3
d

+
µ~rc
r3
c

(2.8)

Having the basic set-up, there is now a need to simplify the system. Using the law of

cosines, the magnitude of the deputy’s inertial position vector is then found as

r2
d = r2

c + ρ2 + 2~rc ·i ~ρ (2.9)

Substituting Eq. 2.9 into a form similar to the two-body acceleration

~rd
r3
d

=
~rc +i ~ρ

(r2
c + ρ2 + 2~rc ·i ~ρ)

3
2

(2.10)

Now is where the second assumption (the first being unperturbed Keplerian motion)

is made. It is assumed that the relative position vector is much smaller than the

position vector of the chief. Therefore, ρ2 << r2
c . Applying this assumption to Eq.

2.10 and simplifying, Eq. 2.11 falls out

~rd
r3
d

=
~rc +i ~ρ

r3
c

1

(1 + 2~rc·i~ρ
r2c

)
3
2

(2.11)
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A binomial expansion of the form

(1 + x)n =
∞∑
k=0

(
n

k

)
xk = 1 + nx+

n(n− 1)x2

2!
+ ... (2.12)

is then applied to the denominator of Eq. 2.11, and truncated at the first term to

arrive at (
1 +

2~rc ·i ~ρ
r2
c

)−3/2

= 1− 3

2

(2~rc ·i ~ρ)

r2
c

(2.13)

Substituting Eq. 2.13 and substituting in Eq. 2.11,

~rd
r3
d

=
~rc +i ~ρ

r3
c

(
1− 3

2

(2~rc ·i ~ρ)

r2
c

)
(2.14)

Taking Eq. 2.14 and substituting in Eq. 2.8

i~̈ρ = −µ~rd
r3
d

+
µ~rc
r3
c

= −µ
(
~rc +i ~ρ

r3
c

(
1− 3

2

(2~rc ·i ~ρ)

r2
c

))
+
µ~rc
r3
c

(2.15)

Noting opposite signs and simplifying, we arrive at

i~̈ρ = − µ
r3
c

(
−3

2

~rc
rc

2~rc ·i ~ρ
rc

+ ~iρ

)
(2.16)

It is now noted that the inertial position vector can be expressed in the LVLH frame

from the dot products in Eq. 2.16. This follows mathematically as

−3

2

~rc
rc

2~rc ·i ~ρ
rc

= −3ôr
(
ôr ·i ~ρ

)
= −3xôr

(2.17)

After substitution, we arrive at

i~̈ρ = − µ
r3
c

(−3xôr +i ~ρ) (2.18)
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As this is the inertial acceleration, and the desired solution is in the LVLH frame, the

transport theorem is now applied. For completion, the transport theorem is

i d

dt
(.) =b d

dt
(.) + ωbi × (.) (2.19)

where the superscript b denotes a non-inertial reference frame, and the superscript i

denoted an inertial frame. Because this is an acceleration, the transport theorem is

applied twice to yield, among others, the well known Coriolis and centripetal terms.

The full transport theorem is expressed as

i~̈r =b ~̈r + ~̇ω × ~r + 2~ω × ~̇r + ~ω × (~ω × ~r) (2.20)

Assuming a circular chief, the angular velocity of the LVLH frame with respect to the

inertial frame is the mean motion of the chief. That is, ~ω =
√

µ
r3c
ôh = nôh and ~̇ω = ~0.

Applying Eq. 2.20 and the angular velocity to Eq. 2.18, the final vector equation of

motion is found as

~̈ρ = −n2(~ρ− 3xôr) + 2 (nẏôr − nẋôθ) +2 xôr +2 yôθ (2.21)

Expressing the ~ρ vector in component form

ẍôr+ ÿôθ+ z̈ôh = −n2((x−3x)ôr+yôθ+zôh)+2 (nẏôr − nẋôθ)+n2xôr+n2yôθ (2.22)

And finally collecting the vector components, the set of three linear, coupled, ordinary

differential equations is found as

0 = ẍ− 2nẏ − 3n2x

0 = ÿ + 2nẋ

0 = z̈ + n2z

(2.23)
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It it worth noting that if an external force is present, the left-hand size of zeros in

Eq. 2.23 are replaced by more specific expressions. Finally, to place the differential

equations in a more comfortable matrix form, the system above can be expressed in

state-space form as 

ẋ

ẏ

ż

ẍ

ÿ

z̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0





x

y

z

ẋ

ẏ

ż


(2.24)

Having the familiar form of Ẋ = AX, basic concepts of linear systems can be used to

find the closed-form solutions in Section 2.3.2.

Without replicating the derivation, Schaub [30] presents the coupled, non-linear

system of differential equations as

ẍ− 2ḟ

(
ẏ − y ṙc

rc

)
− xḟ 2 − µ

r2
c

= − µ
r3
d

(rc + x)

ÿ + 2ḟ

(
ẋ− xṙc

rc

)
− yḟ 2 = − µ

r3
d

y

z̈ = − µ
r3
d

z

(2.25)

where f is the true anomaly of the chief. This system remains valid for arbitrarily

large orbits with a non-circular chief. However, making the same assumptions as

earlier (circular chief, close proximity, first order truncation) this model does in fact

yield the same linear time-invariant set given in Eq. 2.24 (the HCW model).

Finally, we can change the variables to a curvilinear frame via the following

x = δr

y = rcδθ
(2.26)

19



where δr and δθ are differential displacements in the radial and angular directions.

The HCW equations can be expressed as

0 = δr̈ − 2nrcδθ̇ − 3n2δr

0 = rcδθ̈ + 2nδṙ

0 = z̈ + n2z

(2.27)

The use of curvilinear coordinates is often found to be more accurate as the system

will naturally bend the in-track vector along the orbital path [30].

2.3.2 Solving the HCW Differential Equations. Now having a system of

linear, time-invariant ordinary differential equations (LTI ODEs), fundamental prop-

erties of linear systems can be applied to find the solution to Eq. 2.24. The first

fundamental principle (applied without proof) is that the solution to the unforced

system of LTI ODEs

ẋ = Ax (2.28)

where A is the plant matrix, and x is the vector of states, is of the form

x(t) = Φ(t− t0)x0 (2.29)

where Φ(t − t0) is termed the state transition matrix (STM). As STMs form a sig-

nificant foundation for this study, a brief survey is provided in Appendix A. To find

Φ(t− t0), the matrix exponential is used

Φ(t− t0) = eA(t−t0)

Φ(t− t0) = (s1− A)−1
(2.30)
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with s being the Laplace variable. Substituting in the plant matrix from Eq. 2.24,

the STM is expressed as

Φ(t− t0) = L−1



s 0 0 −1 0 0

0 s 0 0 −1 0

0 0 s 0 0 −1

−3n2 0 0 s −2n 0

0 0 0 −2n s 0

0 0 −n2 0 0 s



−1

(2.31)

where L−1 is the inverse Laplace transform. Without replicating the matrix algebra,

Eq. 2.31 reduces to a very elegant solution of the form

Φ(t− t0) =



4− 3 cos θ 0 0 sin θ
n

2
n
(1− cos θ) 0

6(sin θ − θ) 1 0 2
n
(cos θ − 1) 4

n
sin θ − 3θ

n
0

0 0 cos θ 0 0 sin θ
n

3n sin θ 0 0 cos θ 2 sin θ 0

6n(cos θ − 1) 0 0 −2 sin θ 4 cos θ − 3 0

0 0 −n sin θ 0 0 cos θ


(2.32)

where θ = n(t − t0). The state at any time is now a linear combination of the

initial conditions. Often in the literature (for example, [32]), the HCW Φ matrix is

partitioned into four 3× 3 matrices, as the following

Φ(t− t0) =

Φrr Φrv

Φvr Φvv

 (2.33)

where the subscripts r and v correspond to position and velocity, respectively. Having

a complete closed form solution to the LTI ODEs, the system behavior can now be

investigated in Section 2.3.3.
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2.3.3 System Behavior. In this section, only a brief survey is given on the

system behavior of the HCW equations. This is a direct consequence of the ROEs

completely describing the trajectory. As such, to avoid duplicate derivatons, only

top-level system qualities are detailed, and the more mathematical derivations are

detailed in Section 2.4.

The most elegant fallout is the geometry of the in-plane motion of the deputy

relative to the chief. It will later be shown that the radial and in-track trajectory is a

2:1 ellipse. That is, the in-track motion oscillates at twice the magnitude of the radial

with an orthogonal phasing. The ellipse is centered at a constant radial displacement,

but an in-track displacement that may drift if certain initial conditions are not met.

Examining Eq. 2.32, the only secular terms are in the ẏ(t) equation is

Secular Term = (−6nx0 − 3ẏ0) t (2.34)

and to eliminate the drift in the in-track direction, Eq. 2.34 must be null, implying

ẏ0 = −2nx0 (2.35)

which will produce a 2:1 ellipse centered at a constant radial and in-track displace-

ment.

The cross-track (z) motion is completely uncoupled from the radial and in-track

motion in the linearized case. The result of this uncoupling is that any cross-track

displacement will simply superimpose an oscillatory motion on the in-plane trajectory

in the cross-track direction. Vallado [31] summarizes of the effect of initial conditions

on the motion, detailed below

1. The deputy will progress further in-track if beginning in a lower orbit (x0 < 0).

For unperturbed motion, a lower orbit implies a higher-energy orbit. The deputy

will move at a greater relative velocity than the chief and move ahead in-track
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2. The deputy will regress further in-track if beginning in a higher orbit (x0 > 0).

For unperturbed motion, a higher orbit implies a lower-energy orbit. The deputy

will move at a lower relative velocity than the chief and move behind in-track

3. As the initial radial displacement is increased, the relative motion trajectory

will increase. As shown later in the ROE development the size of the relative

orbit is determined by the radial displacement, and the velocities in the radial

and in-track direction.

4. The ellipse can be centered at a constant displacement and the relative orbit

made periodic if the initial condition ẏ0 = −2nx0 is enforced.

5. For a fixed radial displacement, any in-track displacement will produce the same

relative motion, as the deputy will still be in the same orbit at the same energy.

6. A cross-track displacement will simply superimpose oscillations over the in-plane

motion.

Now, having a solid foundation for the HCW motion, the relative orbit elements

can now be derived and shown as a practical parameterization of the model.

2.4 The Relative Orbit Element Realization

Taking the results from Section 2.3, the relative orbit elements are now derived.

Being that the ROEs are the basis of this study, great care is taken in their derivation

following the results of Lovell [33].

2.4.1 Derivation. The ROEs are a set of six parameters that describe the

relative motion in the LVLH frame for the circular chief. The six ROEs are the

semi-major axis (ae), the radial displacement (xd), the in-track displacement (yd),

the in-plane phasing (β), the maximum cross-track amplification (zmax), and the out-

of-plane phasing (ψ). The derivation will be divided into the ROEs describing the

in-plane and the out-of-plane motion.
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2.4.1.1 In-Plane ROEs. The two ROEs most easily derived are the

radial and in-track displacements. Examining the HCW expressions for the motion

in these two directions

x =
ẋ0

n
sin θ −

(
3x0 +

2ẏ0

n

)
cos θ +

(
4x0 +

2ẏ0

n

)
y =

(
6x0 +

4ẏ0

n

)
sin θ +

2ẋ0

n
cos θ − (6nx0 + 3ẏ0)t+

(
y0 −

2ẋ0

n

)
(2.36)

it remains obvious that the x expression is oscillatory with the exception of an offset

term, and that the y expression is oscillatory with the exception of an offset and a

secular term. These offsets are defined as the radial and in-track displacements such

that

xd =

(
4x0 +

2ẏ0

n

)
yd = −(6nx0 + 3ẏ0)t+

(
y0 −

2ẋ0

n

) (2.37)

Letting the constant term (y0− 2ẋ0

n
) = yd0, and recognizing that the expression for yd

is a linear combination of xd, it is then found that the displacements can be written

as

xd = 4x0 +
2ẏ0

n

yd = yd0 −
3

2
nxd(t− t0)

(2.38)

To determine the magnitude of the oscillatory in-plane motion, one can apply the

Hamonic Addition Theorem (or the linear combination of trigonometric functions),

which states that a function written as

f = A sin θ +B cos θ (2.39)
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can be written in the following two manners

f =
√
A2 +B2 sin

(
θ + tan−1

(
B

A

))
f = −

√
A2 +B2 cos

(
θ + tan−1

(
A

−B

)) (2.40)

Applying Eq. 2.40 to the radial motion in Eq. 2.36, and letting A = ẋ0

n
and B =

−(3x0 + 2ẏ0
n

), we see that

x = −

√(
ẋ0

n

)2

+

(
3x0 +

2ẏ0

n

)2

cos

(
θ + tan−1

(
ẋ0

n

(3x0 + 2ẏ0
n

)

))
+ xd (2.41)

For simplicity, the constant phasing parameter β0 can now be defined as

β0 = tan−1
ẋ0

n

(3x0 + 2ẏ0
n

)
(2.42)

Rewriting the radial motion using C =
√

( ẋ0

n
)2 + (3x0 + 2ẏ0

n
)2 such that

x = −C cos(θ + β0) (2.43)

The argument in the cosine function can also be reduced using β = θ+ β0, providing

the final radial expression

x = −C cos β (2.44)

Having a simplified expression for the radial motion, the in-track motion can be

simplified in the same manner. Applying Eq. 2.40 to the in-track expression, and

letting A = (6x0 + 4ẏ0
n

) and B = (2ẋ0

n
), it follows that

y = 2

√(
ẋ0

n

)2

+

(
3x0 +

2ẏ0

n

)2

sin

(
θ + tan−1

(
ẋ0

n

(3x0 + 2ẏ0
n

)

))
(2.45)

25



Substituting the phase and dummy magnitudes,

y = 2C sin β (2.46)

Thus it follows that the in-track motion oscillates orthogonal to the radial motion

at twice the magnitude. This corresponds to the definition of a 2:1 ellipse with the

semi-major axis on the in-track axis. The in-plane ROEs have now been described

and are summarized below, removing the subscripts other than on the initial ROEs:

ae = 2

√(
ẋ

n

)2

+

(
3x+

2ẏ

n

)2

xd = 4x+
2ẏ

n

yd = yd0 −
3

2
nxd(t− t0)

β = θ + tan−1

(
ẋ

3nx+ 2ẏ

)
= θ + β0

(2.47)

where θ = n(t − t0). The transformation to Cartesian position coordinates was also

found, while the velocity coordinates are simply the time derivatives

x = −ae
2

cos β + xd

y = ae sin β + yd

ẋ =
aen

2
sin β

ẏ = aen cos β − 3n

2
xd

(2.48)

2.4.1.2 Out-of-Plane ROEs. As the out-of-plane motion is uncoupled

from the in-plane, only two parameters (other than the mean motion and time) are

needed to fully describe the motion. Examining the cross-track position

z = z0 cos θ +
ż0

n
sin θ (2.49)
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it is fairly obvious the motion is solely sinusoidal with no offset. Directly applying

the Harmonic Addition Theorem to Eq. 2.49, and letting A = ż0
n

and B = z0, the

cross-track motion is written as

z =

√(
ż0

n

)2

+ z2
0 sin

(
θ + tan−1

(
z0

ż0
n

))
(2.50)

Similar to the in-plane motion, initial and current phase angles (ψ0, ψ) can be defined

such that

ψ0 = tan−1 z0n

ż

ψ = θ + ψ0

(2.51)

and the cross track motion reduces to

z =

√(
ż0

n

)2

+ z2
0 sinψ (2.52)

The z motion has now been reduced to a simple sinusoid, with an amplitude of

zmax =

√(
ż0

n

)2

+ z2
0 (2.53)

The cross-track motion can now be specified as

z = zmax sinψ (2.54)

Consequently, the two ROEs describing the cross-track motion can be described as

zmax =

√(
ż0

n

)2

+ z2
0

ψ = θ + ψ0 = θ + tan−1
(z0n

ż

) (2.55)
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where θ = n(t− t0). The inverse transformation to Cartesian coordinates is

z = zmax sinψ

ż = zmaxn cosψ
(2.56)

2.4.2 System Behavior. The time evolution of the relative orbit elements is

of significant importance to this study. The linear time invariant system effected by

the HCW assumptions yields an elegant time history for the ROEs. However, when

this parameterization is applied to a perturbed environment or an elliptical chief,

there is no reason to expect the response to remain the same.

Immediately from the expressions for the radial and in-track motion, the ex-

pression for ae remains constant over time. Also from the radial motion, the radial

displacement remains constant over time. The in-track motion will drift at a rate of

ẏd = −3n

2
xd

= −3n

2
xd0

(2.57)

which can now be utilized for a boundedness condition. If xd0 = 0, Eq. 2.57 reduces

to zero, and the relative ellipse will remain stationary. The phase angle β increases

linearly with time from the initial state β0 by an amount proportional to the mean

motion of the chief. The cross-track ROEs follow a similar analysis. The maximum

cross-track amplification remains at a fixed value, and the cross-track phasing behaves

similarly to the in-plane phasing.

The significance of the ROE parameterization is that the relative motion of the

deputy can be found as an instantaneous elliptical path that is centered at (xd, yd, 0)

[33]. If the relative orbit is drifting, it will drift linearly as specified by the expression

for yd. The phase angle β is related to the angular position to the deputy in the

relative orbit. The cross-track motion intersects the LVLH frame of the chief when
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the phasing is an integer multiple of π, and is takes on the value of zmax and −zmax
when the sine function is maximized (ψ = π/2, 3π/2, respectively).

If the angle γ = ψ − β is used as the constant phase difference between the

cross-track and in-plane motion, then the cross-track expressions can be written as

z = zmax sin(γ + β)

ż = zmaxn cos(γ + β)
(2.58)

and the only time-varying ROEs are β and yd, both of which change linearly with

time.

2.4.3 Summary. To summarize the ROEs, analytical expressions for the

time history is provided as detailed in Lovell [33], as well as the Cartesian conversion.

The ROEs can be coverted from Cartesian coordinates as

ae = 2

√(
ẋ

n

)2

+

(
3x+

2ẏ

n

)2

xd = 4x+
2ẏ

n

yd = y − 2ẋ

n

β = tan−1

(
ẋ

3nx+ 2ẏ

)
zmax =

√(
ż

n

)2

+ z2

ψ = tan−1
(nz
ż

)

(2.59)
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The set R is now defined for future use as R = [ae, xd, yd, β, zmax, ψ]. The time

evolution of the ROEs is

ae = ae0

xd = xd0

yd = yd0 −
3n

2
xdt

β = β0 + nt

zmax = zmax0

ψ = ψ0 + nt

(2.60)

The Cartesian conversion is

x = −ae
2

cos β + xd

y = ae sin β + yd

z = zmax sinψ

ẋ =
ae
2
n sin β

ẏ = aen cos β − 3

2
nxd

ż = zmaxn cosψ

(2.61)

A visualization of the the in-plane ROEs is provided in Fig. 2.4 with β∗ serving

as the physical interpretation of the phase angle.

A visualization of the out-of-plane ROEs is provided in Fig. 2.5 with γ∗ serving

as the in-plane physical interpretation of the relative ascending node.

2.5 Theoretical Impacts of Eccentricity and J2 on the Relative Trajec-

tory

Before delving into the analytical and numeric results, the following sections

present the actual impacts expected in the analytics. The effect of chief eccentricity is

explored. The J2 perturbation is initially surveyed, and its application as a perturbing

30



a
R

ad
ia

l

ea
R / 2ea

�

( , )d dy x

Deputy

�

In-track

Figure 2.4: Visualization of the In-Plane Relative Orbit Using ROEs

Cross-track

*

Perigee

Projection

*

In-track

Radial
True Orbit

Figure 2.5: Visualization of the Out-of-Plane Relative Orbit Using ROEs
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force on relative motion detailed. It should be noted that the combination of both

eccentricity and J2 will induce non-linear combinations of the impacts described in

this section.

2.5.1 The Impact of a Non-Circlar Chief Orbit on Relative Motion. Jiang,

et. al. [34] investigated the unperturbed first-order relative motion to a significant

degree using algebraic methods. It was concluded that the radial/in-track projection

of the orbit may have no more than one self-intersection per orbit, and that the

in-track/cross-track and radial/cross-track may interesct no more than two times

per orbit. Another significant conclusion made is that the general three-dimensional

motion is only planar for degenerate, unrealistic cases. The relative motion was

found to rest on three quadric surfaces: a hyperboloid of one-sheet, an elliptic cone,

or an elliptic cylinder. Sengupta [35] utilizes the solution to the Tschauner and

Hempel equations and expands the in-track and cross-track components as a Fourier

series to examine the effects of eccentricity. Using both true anomaly and time as

independent variables, Sengupta expands the motion using Cauchy residue theory

to be functions of constants, a dominant harmonic, size parameters, and high-order

harmonics. Sengupta notes five significant eccentricity effects due to the expansion

using true anomaly:

1. The presence of high-order harmonics in the motion is the primary mode of the

deviation from the 2× 1 trajectory.

2. The amplitude of the primary harmonic is scaled by the eccentricity, which re-

sults in a cross-track expansion and in-track decrease as eccentricity is increased.

3. A phase shift is induced to the sinusoids of the HCW including terms of (e2, e4, e6, ...).

Ignoring the higher order eccentricity terms yields the original phase.

4. Constant terms displace the center of the relative orbit, and is dependent on

the initial in-plane and out-of-plane phasing.
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5. The relative orbit plane is skewed by the higher order harmonics. Most notably,

the plane of symmetry of the cross-track motion that is normal to the in-track

trajectory is skewed as a function of the eccentricity.

Sengupta’s expansion in time exhibits the same quantative effects as the true anomaly

expansion.

2.5.2 The Impact of the J2 Perturbation.

2.5.2.1 Background on the J2 Perturbation. Motion about a spherical

central body dictates a constant attraction at a given range with no regard to angular

location. This spherical, point-mass assumption leads to an inverse square gravity

field. Oblateness effects such as the equatorial will dramatically modify the gravi-

tational attraction, and for an arbitrary body the differential specific gravitational

potential acting on a point A can be expressed as [30]

dV = −Gdm
s

(2.62)

with G as the universal gravitational constant, dm as a differential mass on the body,

and s is the magnitude of the position vector between the differential mass and A.

Following the introduction of Legendre polynomials, it is well documented that the

gravitational potential field on a body can be expressed as ( [30], [31])

V = −Gm
r
− G

r

∞∑
k=1

∫ ∫ ∫
B

(ρ
r

)k
Pk(cos γ)dm (2.63)

where r is the norm of the position vector from the body centroid to the point A, ρ is

the norm of the position vector from the body centroid to the dm, γ is angle between

ρ and r, and Pk is the Legendre polynomial such that

Pn+1(ν) =
2n+ 1

n+ 1
νPn(ν)− n

n+ 1
Pn−1(ν) (2.64)
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The Legendre polynomials have zero mean and are orthogonal to one another.

A change of coordinates from Cartesian to spherical will result in an infinite se-

ries that expresses the gravitational potential in terms of spherical harmonics. Rather

than expressing it as Eq. 2.63, the gravitational potential can eventually be written

as

V (r, φ) = −µ
r

(
1−

∞∑
k=2

(req
r

)k
JkPk(sinφ)

)
(2.65)

where Jk is the zonal gravitational harmonic, req is the equatorial radius, and φ locates

the position vector vertically from the equatorial plane. Determination of the zonal

harmonics is typically done via an estimation algorithm extracted from observations.

The value for the J2 harmonic has a value of 1082.63x10−6 [30].

Now, using the classical orbital elements a, e, i,Ω, ω,M0, numerous partial deriva-

tives and extensive use of Lagrangian mechanics will yield Lagrange’s planetary equa-

tions, presented in Eq. 2.66 using Schaub’s [30] notation but placed in matrix form.



Ω̇

i̇

ω̇

ȧ

ė

Ṁ0


=



0 1
nab sin i

0 0 0 0

− 1
nab sin i

0 cos i
nab sin i

0 0 0

0 cos i
nab sin i

0 0 b
na3e

0

0 0 0 0 0 2
na

0 0 − b
na3e

0 0 b2

na4e

0 0 0 − 2
na
− b2

na4e
0





∂R
∂Ω

∂R
∂i

∂R
∂ω

∂R
∂a

∂R
∂e

∂R
∂M0


(2.66)

where a and b are the semi-major and semi-minor axes, and R is the the disturbance

potential, which is now known from the spherical harmonic gravitational potential in

Eq. 2.65. Truncating the disturbance potential at the dominant second harmonic, R

becomes

R(r) = −J2

2

µ

r

(req
r

)2

(3 sin2 φ− 1) (2.67)

A change of variables (sinφ = sin(ω+ ν) sin i) then allows to disturbance potential to

be written as

R(r) = −J2

2

µ

r

(req
r

)2

(3(sin(ω + ν) sin i)2 − 1) (2.68)
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Taking the gradient of Eq. 2.68, the osculating time rates of the orbital elements can

be found from the matrix multiplication in Eq. 2.66. The J2 perturbation induces

both short and long term periodic effects, in addition to secular drift rates. For

relative motion, it is typically assumed that the differences in the short and long term

variations in the chief and deputy are negligible. Thus, it is the secular time rate

that is the primary perturbation in relative motion. An orbit-average of Lagrange’s

planetary equations using the J2 disturbance yields the following mean orbital element

drift rates in Eq. (2.69 [31].

˙̄Ω = −3

2
J2n

(
req
p

)2

cos i

˙̄i = 0

˙̄ω =
3

4
J2n

(
req
p

)2

(5 cos2 i− 1)

˙̄a = 0

˙̄e = 0

˙̄M0 =
3

4
J2n

(
req
p

)2√
1− e2(3 cos2 i− 1) + n

(2.69)

where the barred quantities indicate mean elements.

The resulting orbit averaged COEs make intuitive sense. Using conservation of

energy arguments, the semi-major axis can be shown to vary only periodically [31].

Inherent in the construction of spherical harmonics is the assumption of an axially

symmetric central body; this implies that the angular momentum about the polar

axis is a constant. If the inclination varied secularly from J2, at one point this term

would equate to zero, which also directly implies that the eccentricity can only vary

periodically.

2.5.2.2 Effect on Relative Motion. Short period effects of J2 induce

small oscillations in the orbit elements, but do not contribute to the orbital drift [30],

as errors from short period can be expected on the order of 50-100 m [31] and nearly
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identical between the chief and deputy. The long period effect is the rotation of

apsides and will have a near negligible difference between the chief and the deputy

for close proximity operations.

To better understand what effects will occur from the perturbations, the linear

transformation from orbital elements to the Hill frame (presented in [30]) is examined.

The radial displacement is merely the difference in the two orbital radii. From the

two-body trajectory relation, the orbital radii are functions of a, e, and true anomaly.

Using mean orbital elements, the mean change in the radial direction will be unaffected

by a and e oscillations, but will be impacted by the mean anomaly difference (which

obviously corresponds to a true anomaly difference) [30]. The in-track and cross-

track motions are functions of the chief’s orbital radius, inclination, and true latitude,

and also are functions of the differences in the true latitude, inclination, and right

ascenscion of the ascending node. Greater variations are to be expected in these

components as the mean rates impact this motion significantly.

Schweighart [36] provides a well-rounded discussion concerning where the J2

effect would manifest itself in the relative trajectory, but it is primarily for circular

reference orbits. The variance in the ascending node modifies the amplitude of the

cross-track motion. Schweighart compares the cross-track relation to a ”scissoring

effect” [36] in that as the scissors are opened, the intersection of the blade tips quickly

moves towards the handle, but opening further decreases the rate of the intersection.

The blades correspond to the orbital planes and their movement due to secular drift in

the ascending node. The rotation of the apsides moves the location of closest approach,

modifying the period and minima locations of the radial and in-track components.

This change impacts the periodicity of the radial and in-track motion in addition to

modifying the period of the reference orbit. A similar effect is found from the secular

change of the mean anomaly which also modifies the period of the reference orbit.

The orbital element rate of the mean anomaly and argument of perigee can be

collapsed to a drift in the mean argument of latitude (θ̇ = Ṁ + ω̇). The difference
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between the two θ̇ values will result in in-plane angular deviation. The differences

in Ω̇ will lead to cross-track amplification. To maintain a static relative orbit, initial

conditions can be made to construct invariant orbits based on equating the secular

drift of the latitude and ascending node.
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III. Description of Applied Models and Methodology

As a means to provide clarity on the state transition matrices and models applied

throughout the remainder of this study, the following sections will present in detail

the methodology and results of the applied models. The Gim-Alfriend, Yamanaka-

Ankersen, Schweighart-Sedwick, and numerically integrated truth model will be dis-

cussed in detail. The application of each model to this study is then discussed. The

processes used to perform the operational mapping, stationary orbit initialization,

and the guidance algorithm are also discussed.

3.1 Applied Models

The following section details the propagation in the Gim-Alfriend, Yamanaka-

Ankersen, and Schweighart-Sedwick relative motion models. The Gim-Afriend and

Yamanaka-Ankersen systems are presented in closed form, while the Schweighart-

Sedwick system is given initially as a set of differential equations that are later solved

by the author.

3.1.1 Gim-Alfriend. The Gim-Alfriend model [8] is a geometric method

to determine the relative motion dynamics to include both chief eccentricity and

the J2 effect. The model uses the non-singular orbital elements defined as the set

e = (a, θ, i, q1, q2,Ω)T , where a is the semi-major axis, i is the inclination, θ is the

argument of latitude, and Ω is the right ascenscion of the ascending node. The

parameters q1 and q2 are defined as

q1 = e cosω

q2 = e sinω
(3.1)

where e is the eccentricity, and ω is the argument of periapsis. Using the argument

of true latitude and the q(.) parameters avoids singularities as true anomaly and the

argument of perigee are undefined for circular orbits. For higher accuracy, the use of

curvilinear coordinates is used as discussed in Section 2.2.3.
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The GA model provides a STM to propagate the Cartesian initial conditions

forward using either osculating or mean orbital elements. Using the GA verbiage, the

propagation goes as

X(t) = [A(t) + αB(t)]δe(t) (3.2)

where A is the unperturbed transformation from orbital elements to Cartesian coordi-

nates, B is transformation from orbital elements to Cartesian coordinates containing

J2 terms, α is equal to 3J2R
2
e, Re is the radius of the Earth, and δe(t) is the instan-

taneous orbital element differences (δe = ed − ec). The vector δe(t) is propagated as

δe(t) = φe(t, t0)δe(t0) (3.3)

where φe is the state transition matrix for orbital element differences. The propagation

from Cartesian initial conditions to the current Cartesian state is thus

X(t) = ΦJ2(t, t0)X(t0)

ΦJ2 = [A(t) + αB(t)]φe(t, t0)[A(t0) + αB(t0)]−1
(3.4)

This is the point at which the model splits between the use of osculating orbital

elements and mean orbital elements. If mean orbital elements are used, the ΦJ2 state

transition matrix is expressed as Φ̄J2 such that

X(t) = Φ̄J2(t, t0)X(t0)

Φ̄J2 = [Ā(t) + αB̄(t)]φ̄e(t, t0)[Ā(t0) + αB̄(t0)]−1
(3.5)

In Eq. 3.5, Ā is equivalent to A; however, osculating elements invoke a different

angular velocity and B̄ 6= B.

If osculating elements are to be used, the propagation goes as

X(t) = ΦJ2(t, t0)X(t0)

ΦJ2 = [A(t) + αB(t)]D(t)φ̄e(t, t0)D−1(t0)[A(t0) + αB(t0)]−1
(3.6)
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where the D matrix is the Jacobian of the osculating orbital elements with respect to

the mean orbital elements. That is

D(t) =
∂eosc
∂emean

(3.7)

which includes the short and long period oscillations in the osculating classical orbital

elements. The members of these matrices are entirely too cumbersome to list here

and are detailed in the appendices of [8].

Assumptions inherent in the GA model are close proximity between the chief

and deputy, equivalent drag effects, and the only perturbation to Keplerian motion is

the J2 effect.

3.1.2 Yamanaka-Ankersen. The Yamanaka-Ankersen (YA) model provides

a state transition matrix mapping Cartesian initial conditions to a current Cartesian

state [6]. The model remains as a first order linearization, but presents a closed form

solution. Following a derivation similar to the HCW construction, the differential

equations of relative motion as presented in the YA verbiage are
ẍ

ÿ

z̈

 =


−kω3/2x+ 2ωż + ω̇z + ω2x

−kω3/2y

2kω3/2z − 2ωẋ− ω̇x+ ω2z

+ af + acd + add (3.8)

where ω is the angular rate of the chief, x, y, z are the Cartesian relative motion

coordinates, k = µ/h3/2, af is an applied force, and acd,add are the perturbing forces

on the chief and deputy. The Cartesian coordinates differ from the reference frame

explained in Section 2.2.2. The previous development has x, y, z representing the

radial, in-track, and cross-track motion; compared to this, the YA model places its

x, y, z as the in-track, negative cross-track, and negative radial. Later, matrices of

1’s and 0’s will be used for model agreement. Assuming unforced and unperturbed
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conditions, the differential equations can be simplified as

ρx′′ − 2e sin θx′ − e cos θx = 2ρz′ − 2e sin θz

ρy′′ − 2e sin θy′ = −y

ρz′′ − 2e sin θz′ − (3 + e cos θ)z = −2ρx′ + 2e sin θx

(3.9)

where the prime superscript indicates differentiation with respect to the true anomaly

of the chief, θ is the true anomaly of the chief, and ρ = 1+e cos θ. A solution is derived

that contains the same integral as Eq. 2.2, which was historically left in integral form

until the Yamanaka-Ankersen development. The YA proposal is that constant angular

momentum allows the time rate of change of the true anomaly to be expressed as

dθ

dt
= k2ρ2 (3.10)

which eventually yields the expression

k2(t− t0) = J(θ) (3.11)

where J(θ) is the integral from Eq. 2.2. Following a geometric interpretation of the

relative motion and some matrix algebra to prove existence and uniqueness, a solu-

tion algorithm is proposed. Beginning with initial conditions in the LVLH frame, a

transformation to a ”tilde” space is made. The tilde space is non-physical and is trans-

formed from LVLH space through multiplication by the eccentricity, true anomaly,

and the integral J . These initial tilde conditions are then transformed into a set of

”psuedoinitial” conditions that can then be propagated forward in the same space.

The ”psuedoinitial” conditions are found by evaluating the inverse of the STM eval-

uated at the initial time. These conditions can then be propagated forward in tilde

space. The out-of-plane motion does not require the ”psuedoinitial” transformation

and is propagated solely in the tilde state.
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Assumptions inherent in the YA model are close proximity between the chief

and deputy, equivalent drag effects, and unperturbed Keplerian motion.

3.1.3 Schweighart-Sedwick.

3.1.3.1 Model Description. The Schweighart-Sedwick (SS) model [36]

is perhaps one of the most applicable modes of this study. The SS system assumes

a circular reference orbit, just as the assumption inherent in the ROE derivation.

However, an orbit average of the J2 perturbation is included as a perturbing force.

The model is presented in closed form with initial conditions enforced to bound the

orbit. Therefore, the SS model presents a method of initialization for a periodic orbit.

The derivation of the equations of motion is rather intuitive. The J2 effect is

inserted as an acceleration to a Newtonian second law formulation. Higher order terms

are linearized with respect to the reference orbit, and a priori corrections are made to

the reference orbit to account for the perturbation (including period matching, nodal

drift correction, and cross-track motion correction). The model uses this to derive

a set of constant coefficient, linear, ordinary differential equations that have a form

rather similar to the HCW differential equations. The solutions presented in [37] are

given in closed form. However, the desire is to express the ROEs as a function of any

initial condition. The differential equations are derived as

ẍ− 2ncẏ − (5c2 − 2)n2x = 0

ÿ + 2ncẋ = 0

z̈ + (3c2 − 2)n2z = 0

(3.12)

where x, y, z are the radial, in-track, and cross-track coordinates, n is the mean motion

of the chief, and c is a constant incorporating the J2 effect. For this study, Eq. 3.12

will be solved in closed form without enforcing initial conditions. The SS model
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provides a periodic orbit of the following form (from [37])

x = x0 cos θ +
g

2c
y0 sin θ

y = −2c

g
x0 sin θ + y0 cos θ

z = rΦ sin(α− γ)

Φ = Φ0 cos γ0 sec γ

γ = tan−1(ε+ tan γ0)

(3.13)

where θ is a modified time-varying in-plane phasing, α is a modified orbital frequency,

Φ is related to the cross-track amplification, γ is a cross-track phasing, and ε is a

frequency related to the change in cross-track phasing. The various constants and

coefficient definitions can be found in [37]. The values are primarily functions of the

reference orbit inclination and are first order in J2. The in-plane phasing and initial

conditions of HCW are slightly dampened, and the cross-track motion operates as a

function of angular differences rather than the simple, uncoupled harmonic oscillator.

The differential equations in Eq. 3.12 will be solved later.

Assumptions inherent in the SS model are close proximity between the chief and

deputy, equivalent drag effects, a circular chief or orbit, and the only perturbation to

Keplerian dynamics is the J2 effect.

3.1.4 Numerically Integrated Truth Model. To construct a foundation for

comparison of the true motion for both Keplerian and perturbed motion, a numerical

integration is employed in Matlab using the ode45 function (a one-step solution using

the Dormand-Prince pair of the Runga-Kutta family of integrators). Initial inputs

selected are the chief orbital elements [a, e, i, ω,Ω,M ]T and the initial LVLH displace-

ment (~ρ) and velocity (~̇ρ). This section will describe the equations of motion for the J2

case, and it is noted that the unperturbed motion can be simply obtained by setting

J2 to zero. Given the chief satellite orbital elements, a standard two-body formula-

tion will yield the inertial position and velocity of the chief. The inertial position and
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velocity of the deputy are then found through the following rotation

i~rd = Rio~ρ+i ~rc (3.14)

where the rotation matrix Rio rotates a vector from the LVLH or orbital frame to the

inertial frame, and is defined as

Rio =
[
ôr ôθ ôh

]
(3.15)

whose column-vector components have been previously defined in Eq. 2.3. The

inertial velocity of the deputy requires a Coriolis term in the rotation and is found as

~̇rd = ~̇rc + Rio
(
~̇ρ+ ~ωoi × ~ρ

)
(3.16)

with f having been previously defined as the chief true anomaly, and ~ωoi is the angular

velocity of the orbital LVLH frame with respect to the inertial frame. Now having the

inertial position and velocity of the chief and deputy, initial conditions are known for

the integration. Simultaneous integration of Eq. 3.17 for both the chief and deputy

allow for their states to be known at any time.

~̈r = − µ
r3

+∇R(~r)J2 (3.17)

where R(~r)J2 is the J2 disturbing function. Knowing the state at a time t, the relative

position vector can be found as

~ρ = Roi (~rd − ~rc) (3.18)

where Roi = RioT

and rotates from the inertial to the orbital LVLH frame. The

relative velocity requires a cross term and is found as

~̇ρ = Roi
(
~̇rd − ~̇rc + ~ωio × (~rd − ~rc)

)
(3.19)
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The J2 effect, however, modifies the angular velocity of the LVLH frame slightly.

Rather than just having its three-component as the time rate of the true anomaly,

the angular velocity using mean orbital elements is found from Gim and Alfriend [8]

as

~ωoi =


Ω̇ sin θ sin i

Ω̇ cos θ sin i

θ̇ + Ω̇ cos i

 (3.20)

where the mean orbital element time rates are detailed in Eq. 2.69.

Note that as expected for unperturbed motion, the time rates of the perturbed

orbital elements are nulled and the angular velocity vector becomes

~ωoi =


0

0

ḟ

 (3.21)

and Eq. 3.17 reduces to

~̈r = − µ
r3

(3.22)

and the previously mentioned rotations remain the same.

If it is desired to examine the relative motion outside the linearized regime

the analytical models allow, the numerically integrated truth model allows for the

selection of initial orbital elements for both the chief and deputy and the forward

propagation.

3.2 Methodology

The following section details how the relative motion models are applied to the

three phases of this study. The general transformations and propagations to derive the

ROE expressions are described. Applications of ROEs are then described to include

initialization of a bounded relative orbit based on ROEs, and a proposed guidance

and navigation algorithm.
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3.2.1 Analytical Expressions for the Relative Orbit Elements. Currently,

expressions for the ROEs are known for the unperturbed circular chief. It is now

desired to examine the behavior of the ROEs for a perturbed, circular chief and

an unperturbed, elliptical chief. There is a further sub-division in this study between

Cartesian and geometric representations. Let the transformation from Cartesian space

to ROE space be denoted as

R(t) =
[
ae(t) xd(t) yd(t) β(t) zmax(t) ψ(t)

]
= Λ(X)

(3.23)

where X is the Cartesian relative position and velocity states, and Λ represents a

series of non-linear operations on the states. The analytical instantaneous states

of the Yamanaka-Ankersen and Schweighart-Sedwick models will be substituted as

the argument in the Λ transformation. The inverse transformation is now defined

as X = Λ−1R(t). Consequently, this allows propagation of the initial relative orbit

elements to any time following the transformation. The direct state substitution is

employed for the unperturbed elliptical chief using the YA model; however, the cross-

track motion of the Schweighart-Sedwick motion allows for a more intuitive expression

for the out-of-plane relative orbit elements.

Expressing the states in terms of orbital element differences is a study investi-

gated solely for the perturbed circular chief. The primary reasoning for this restriction

is for the perturbed or two-body elliptical chief, the ROE expressions become exceed-

ingly unwieldy. However, if the initial circular assumption is made in the linearized

mapping between the Hill frame and orbital element differences [30], changes in the re-

sulting expressions resulting from J2 can be obtained rather elegantly. The perturbed

orbital element differences will be taken from the Gim-Alfriend model. A chain rule

approach will also be taken to examine the time rates of the circular ROEs under the

J2 effect.
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3.2.2 Applications of Osculating Relative Orbit Elements. The following

sections briefly detail the methodology in describing the applications of osculating

ROEs.

3.2.2.1 Initialization of Relative Orbit Elements for Periodic Trajecto-

ries. Several methods exist (for example, Sabol [3], Schaub [30], and Sengupta [38])

to set the initial conditions of a formation to induce a stationary trajectory. The def-

inition used in this study for a stationary orbit is that of a relative trajectory that

repeats itself. For ideal Keplerian motion, the fundamental requirement for a static

relative trajectory is equal periods for each body in the formation. This constraint

equates to δa = 0 for unperturbed motion. Although the constraint remains the same,

chief eccentricity complicates the expression when converted to Cartesian coordinates.

Considering the J2 perturbed environment, movement of the perigee and nodal re-

gression modify the periodicity of the orbit. Schaub proposes a algorithm [30] for J2

invariance that results in selection of either the differential inclination, eccentricity, or

semi-major axes between the chief and deputy, and the initial differential ascending

node, perigee, and mean anomalies calculated. Moreover, because of the first-order

approximation of the J2 invariance algorithm, there is slight long-term drift.

Initial conditions for the unperturbed elliptical chief will be transformed from

the Cartesian LVLH frame to ROE conditions using an equal periodicity condi-

tion. The conditions will be validated using the Yamanaka-Ankersen derived ROEs.

Bounding the perturbed circular orbit will use the Cartesian conditions set in the

Schweighart-Sedwick model converted to ROE space. Validation will be used via the

Schweighart-Sedwick derived ROEs.

3.2.2.2 Guidance and Navigation. Estimation of relative orbit ele-

ments also carries with it the connotation of guidance. As a means of showing the

applicability of the ROEs, the eccentric ROE derivation will be used to determine an

instantaneous impulse that can be used to control docking, rendezvous, and guidance.

Expressions will be derived to numerically solve a set of non-linear equations for the
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necessary velocity change to yield a desired end state. Assuming that the desired

maneuver is a solvable problem, the calculated post-burn ROEs will be compared

with the desired maneuver, along with the resulting trajectories.
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IV. Osculating Relative Orbit Elements

The following sections detail the mathematical derivations necessary to obtain analyt-

ical expressions for the relative orbit elements with an eccentric chief and a perturbed

circular chief. Section 4.1 details the derivation for the elliptical chief. Section 4.2 de-

rives the closed form expressions of the J2 perturbed osculating ROEs. Finally, Sec.4.3

details areas of applications for the ROEs using a guidance and navigation algorithm

and, in addition, analytical expressions to initialize a bounded relative orbit.

4.1 The Non-Circular Chief

4.1.1 State Propagation. Yamanaka and Ankersen presents an algorithm for

calculating relative satellite motion [6]. Before detailing the matrix multiplication, the

verbiage used in the YA model is now introduced as

ρ = 1 + e cos θ

s = ρ sin θ

c = ρ cos θ

s′ = cos θ + e cos 2θ

c′ = −(sin θ + e sin 2θ)

J =
h

p2
(t− t0)

(4.1)

Here, θ is the true anomaly of the chief, p is the semi-latus rectum of the chief’s orbit,

and h is the chief orbital angular momentum. Given in [6], the in-plane motion can

be propagated as


x̃

z̃

ṽx

ṽz

 =


1 −c

(
1 + 1

ρ

)
s
(

1 + 1
ρ

)
3ρ2J

0 s c (2− 3esJ)

0 2s 2c− e 3(1− 2esJ)

0 s′ c′ −3e(s′J + s
ρ2

)




x̄0

z̄0

v̄x0

v̄z0

 (4.2)
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It is very important to note that the terms x, z, vx, vy terms are reported here using

the YA LVLH frame. A conversion will be made later for model agreement. For

the moment, the 4×4 matrix in Eq. 4.2 is denoted as Φ, such that X̃ip = ΦX̄ip0,

with the in-plane YA states used as arguments in the unbolded vector Xip. The tilde

and bar accents denote transformed coordinates; however, the transformation is not

a rotation but can be shown to be a product of matrix multiplication. Letting the

Cartesian to tilde space transformation be denoted by H, and the tilde to Cartesian

transformation as H−1, the matrices are found by inspection of the YA model as

H =


ρ 0 0 0

0 ρ 0 0

−es 0 1
k2ρ

0

0 −es 0 1
k2ρ



H−1 =


1
ρ

0 0 0

0 1
ρ

0 0

k2es 0 k2ρ 0

0 k2es 0 k2ρ



(4.3)

such that

X̃ = HX

X = H−1X̃
(4.4)

The barred coordinates are a function of the tilde coordinates. Allowing the trans-

formation denoted by L such that X̄ = LX̃, the matrix L is expressed as

L =
1

1− e2


1− e2 3es

(
1
ρ

+ 1
ρ2

)
−es

(
1 + 1

ρ

)
−ec+ 2

0 −3s
(

1
ρ

+ e2

ρ2

)
s
(

1 + 1
ρ

)
c− 2e

0 −3
(
c
ρ

+ e
)

c
(

1 + 1
ρ

)
+ e −s

0 3ρ+ e2 − 1 −ρ2 es

 (4.5)
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The final matrix multiplication for the in-plane motion then becomes

Xip(t) = H−1(t)X̃ip(t)

Xip(t) = H−1(t)Φ(t, t0)X̄ip0

Xip(t) = H−1(t)Φ(t, t0)L(t0)X̃ip0

Xip(t) = H−1(t)Φ(t, t0)L(t0)H(t0)Xip0

(4.6)

There now exists a single state transition matrix to propagate the initial conditions

to a desired time for the in-plane motion. Using the YA defined STM, the out of

plane motion is found more simply as a propagation in YA tilde coordinates. Letting

the out-of-plane tilde to Cartesian transformation be denoted as H1, the propagation

goes as

Xop = H−1
1 (t)Φop(t, t0)H1(t0)Xop0 (4.7)

with the matrices defined as

Φop(t, t0) =

 c s

−s c


θ−θ0

H−1
1 (t) =

1

ρθ−θ0

 1
ρ

0

k2es k2ρ


H1(t0) =

 ρ 0

−es 1
k2ρ


θ−θ0

(4.8)

where θ−θ0 indicates that values in the matrix are calculated at the difference between

the initial and current true anomaly of the chief. However, the Yamanaka-Ankersen

model uses a coordinate system that does not agree with the nomenclature already

established in the current study. The YA model labels its x, y, z coordinates as in-

track, negative cross-track, and negative radial, counter to the current study’s usage

of x, y, z as radial, in-track, cross-track (XROE). This requires a multiplication of

the initial conditions and end-state by a matrix of ones and zeros. Labeling this
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’agreement’ matrix as U such that XROE = UXya , the in-plane and out-of-plane

portions are found by inspection as

Uip =


0 −1 0 0

0 0 0 −1

1 0 0 0

0 0 1 0


Uop =

−1 0

0 −1


(4.9)

This conversion in matrix form is now seen as
x

y

ẋ

ẏ


ROE

=


0 −1 0 0

0 0 0 −1

1 0 0 0

0 0 1 0




x

z

ẋ

ż


Y Az

ż


ROE

=

−1 0

0 −1

y
ẏ


(4.10)

The final propagation in the nomenclature of the current study now goes as

Xip(t) = UipH
−1(t)Φ(t, t0)L(t0)H(t0)UT

ipXip(t0)

Xop(t) = UopH
−1
1 (t)Φop(t, t0)H1(t0)UT

opXop0

(4.11)

where Xip(t) =
[
x y ẋ ẏ

]T
and Xop(t) =

[
z ż

]T
. The x, y, z triplet now denotes

radial, in-track, and cross-track coordinates. Condensing Eq. 4.11, the expression

can be written as

Xip(t) = Φ̄ip(t, t0)Xip(t0)

Xop(t) = Φ̄ip(t, t0)Xop0

(4.12)
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where Φ̄ip(t, t0) is a 4×4 matrix propagating the in-plane trajectory, and Φ̄op(t, t0) is

a 2×2 matrix propagating the out-of-plane trajectory. Now having the state propa-

gation, the relative orbit elements can now be solved for analytically.

4.1.2 Analytical Derivation of Relative Orbit Elements for the Unperturbed

Noncircular Chief. Now we can derive the ROEs for the noncircular chief using

the full matrix multiplication of Eq. 4.11. For now, the derivation will not make any

assumptions on initial conditions (In Section 4.1.3, a perigee epoch assumption will

be enforced and justified). To avoid cumbersome equations, the components of the

state transition matrices in Eq. 4.11 will be expressed for the in-plane motion as
x

y

ẋ

ẏ

 =


A11 . . . . . . A14

...
. . .

...
...

. . .
...

A41 . . . . . . A44




x0

y0

ẋ0

ẏ0

 (4.13)

and for the out of plane motion asz
ż

 =

C11 C12

C21 C22

z0

ż0

 (4.14)

The analytical expressions for the parameters A11, A12, . . . , C22 can be found in Ap-

pendix C. However, it is important to note that the full expressions are very cumber-

some and are extremely tedious to present analytically. Those components presented

in the Appendix utilize an assumption of a perigee initial condition and epoch time

of t0 = 0. This is not without loss of applicability as is noted in Section 4.1.3. The

following derivations are performed using generic Aij components and is valid for both

the full and assumed expressions.
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4.1.2.1 Initial ROE Propagation in lieu of the State Vector. The

in-plane initial conditions expressed in terms of ROEs are
x0

y0

ẋ0

ẏ0

 =


−ae0

2
cos β0 + xd0

ae0 sin β0 + yd0

ae0

2
n sin β0

ae0n cos β0 − 3
2
nxd0

 (4.15)

With respect to the ROEs, the non-phasing terms can be separated from the angular

terms by inspection as
−ae0

2
cos β0 + xd0

ae0 sin β0 + yd0

ae0

2
n sin β0

ae0n cos β0 − 3
2
nxd0

 =


− cosβ0

2
1 0

sin β0 0 1

n
2

sin β0 0 0

n cos β0 −3n
2

0



ae0

xd0

yd0

 (4.16)

Rewriting the initial Cartesian vector as Eq. 4.16 and substituting in Eq. 4.13, the

in-plane state can be written as
x

y

ẋ

ẏ

 =



(
A12 sin β0 − A11 cosβ0

2
+ A14n cos β0 + A13n sinβ0

2

) (
A11− 3nA14

2

)
A12(

A22 sin β0 − A21 cosβ0

2
+ A24n cos β0 + A23n sinβ0

2

) (
A21− 3nA24

2

)
A22(

A32 sin β0 − A31 cosβ0

2
+ A34n cos β0 + A33n sinβ0

2

) (
A31− 3nA34

2

)
A32(

A42 sin β0 − A41 cosβ0

2
+ A44n cos β0 + A43n sinβ0

2

) (
A41− 3nA44

2

)
A42



ae0

xd0

yd0


(4.17)

For simplicity, each component of Eq. 4.17 will be assigned to parameter Bij to form

the time varying matrix B(t) such that


x

y

ẋ

ẏ

 = B(t)


ae0

xd0

yd0

 (4.18)
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Similar to the initial set-up of the in-plane motion, the out-of-plane state can

be expressed as a function of the initial ROEs using the conversion

z0 = zmax0 sinψ0

ż0 = zmax0n cosψ0

(4.19)

Substituting Eq. 4.19 in Eq. 4.14, the cross-track state can be found asz
ż

 =

C11 C12

C21 C22

 zmax0 sinψ0

zmax0n cosψ0

 (4.20)

Factoring out the zmax0 term and multiplying the resulting inner matrices, a single

multiplication can be found asz
ż

 =

C11 sinψ0 + C12n cosψ0

C21 sinψ0 + C22n cosψ0

 zmax0 (4.21)

and assigning each component of the matrix in Eq. 4.21 the parameter Dij, the

cross-track motion is now propagated asz
ż

 = D(t)zmax0 (4.22)

4.1.2.2 State Substitution as Arguments in the Relative Orbit Element

Expressions. Having expressions for the state as a function of initial ROEs, the

propagated ROEs can now be found. The relative semi-major axis is found as

ae = 2

√(
ẋ

n

)2

+

(
3x+

2ẏ

n

)2

(4.23)

Expanding the above expression becomes a rather tedious process. To gather enough

information to observe the impact of the coefficients on the initial conditions, the

expression for ae is squared, expanded, and grouped according to the initial ROEs.

55



Foregoing the extensive algebra, the highly coupled end result is found as

ae =
√
α1a2

e0 + α2x2
d0 + α3y2

d0 + α4xd0yd0 + α5ae0xd0 + α6ae0yd0 (4.24)

where the values for the time-varying α coefficients are listed in Appendix C. More-

over, the derivations are given in further detail in Appendix B.

In contrast to the relative semi-major axis, the radial displacement is a linear

combination of two Cartesian states. Expressing the radial displacement as

xd = 4x+ 2
ẏ

n
(4.25)

state substitution yields after grouping like terms

xd = σ1ae0 + σ2xd0 + σ3yd0 (4.26)

where the values for the time-varying σ coefficients are listed in Appendix C.

Very similar to the radial-displacement and expressing yd as yd = y − 2ẋ
n

, the

in-track displacement is also found as a function of time-varying coefficients as

yd = Σ1ae0 + Σ2xd0 + Σ3yd0 (4.27)

with the Σ expressions listed in Appendix C.

The in-plane phasing angle is expressed as

β = tan−1

(
ẋ

3nx+ 2ẏ

)
(4.28)

which in reality is the ratio of the two parenthetical components of the semi-major

axis function. The in-plane phasing is found as

β = tan−1

(
B31ae0 +B32xd0 +B33yd0

(3nB11 + 2B41) ae0 + (3nB12 + 2B42)xd0 + (3nB13 + 2B43) yd0

)
(4.29)
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where the B coefficients have previously been defined from Eq. 4.17.

The out-of-plane phasing angle ψ is nonlinear in the arctangent function. The

expression for ψ is

ψ = tan−1
(nz
ż

)
(4.30)

and after substitution it is found as

ψ = tan−1

(
nD11

D21

)
(4.31)

where the Dij terms are obtained from Eq. 4.22. The final ROE to examine is the

cross-track amplification. Using the conversion

zmax =

√(
ż

n

)2

+ z2 (4.32)

which is found as a time-varying value as

zmax = zmax0

√(
D21

n

)2

+D2
11 (4.33)
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To provide a summarization of the osculating ROEs with an eccentric chief, the

following list is provided

ae =
√
α1a2

e0 + α2x2
d0 + α3y2

d0 + α4xd0yd0 + α5ae0xd0 + α6ae0yd0xd
yd

 =

σ1 σ2 σ3

Σ1 Σ2 Σ3



ae0

xd0

yd0


β = tan−1

(
B31ae0 +B31xd0 +B33yd0

(3nB11 + 2B41) ae0 + (3nB12 + 2B42)xd0 + (3nB13 + 2B43) yd0

)
ψ = tan−1

(
nD11

D21

)
zmax = zmax0

√(
D21

n

)2

+D2
11

(4.34)

with the time-varying coefficients αi, σi,Σi, Bij, and Dij detailed in Appendix C.

4.1.3 Perigee Epoch Simplification. The time-varying coefficients of Eq.

4.34 are extremely cumbersome. To simplify the complicated coefficients, it is now

assumed that the epoch time is equivalently zero (t0 = 0), and that the true anomaly

of the chief at epoch is perigee (θ0 = 0). The implication of this assumption is not in

immediate disfavor of the model. From a deterministic standpoint and employment

of a state transition matrix, knowledge of the state at any one time allows knowledge

of the state any other time. For example, consider a set of relative navigation data at

a time t that yields a relative state X(t). From the fundamentals of state transition

matrices given in Appendix A, the state at perigee at time tp can be found as X(tp) =

Φ(tp, t)X(t) = Φ−1(t, tp)X(t), and the model reinitialized to t = 0 at the perigee

time for model agreement presents little difficulty. The only spatial limitations on

the initial conditions are those limited by the degree of accuracy in the linearization

assumptions in the model.

The actual enforcement of the initial condition assumption allows for the L and

H of Eq. 4.4 and Eq. 4.5 transformations to greatly simplify. However, the nature
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of the derivation demands that the general form of Eq. 4.34 remains the same. The

coefficients simplify significantly and are detailed in Appendix C.

4.1.4 Numerical Examples. To demonstrate the applicability of the oscu-

lating parameterization, the following numerical examples will demonstrate the accu-

racy of the method when applied to numerical integration of two-body (Keplerian)

motion. The relative states are calculated analytically using the ROE parameteriza-

tion and compared to the resulting integration. Stationary (repeating relative orbits)

examples of varying eccentricity are given, followed by a drifting example. The sta-

tionary relative orbits are found using the conditions detailed in Appendix F. Initial

conditions are given in the form R0 =
[
ae0 xd0 yd0 β0 zmax0 ψ0

]
with units of

(km,rad) where appropriate, and the chief orbital elements are given in the form

ec0 =
[
a e i ω Ω M0

]
with units of (km,rad) as well.

4.1.4.1 Low-Eccentricity, Stationary Relative Orbit. Given the follow-

ing initial conditions

R0 =
[
3.4890 0.1 0.5 0 0.5 0

]
ec0 =

[
10000 0.01 0.5236 0 0 0

] (4.35)

The three-dimensional propagation using osculating ROEs as compared to the integra-

tion is shown in Fig. 4.1 By immediate inspection, the three-dimensional trajectory

using the YA dynamics compares well with the numerical integration. Little skewness

is observed in the out-of-plane motion, and the projected in-plane resembles a closed

irregular conic.

Figure 4.2 provides a display of the in-plane ROEs as calculated through the

derived equations compared to the HCW prediction. The x-axis is labeled as orbit

fraction and represents the current time in the orbit divided by the nominal chief

period. The ROEs for a circular chief predict a constant ae and xd; however, using

the eccentric chief parameterization shows a periodic ae that coincidentally intersects

59



-2

-1

0

1

2

-4

-2

0

2

4
-0.5

0

0.5

 

Radial (km)

Relative Trajectories

In-track (km)
 

C
ro

ss
-t

ra
ck

 (
km

)

YA
2BP

Figure 4.1: Three-Dimensional Relative Trajectory using Osculating ROEs Compared
to Numerical Integration with Chief Eccentricity of 0.01

the HCW semi-major axis at perigee. The same condition is true for the radial

displacement with a HCW coexistence at perigee. Using the HCW realization would

introduce drift in this case, but the eccentricity effects yield a bounded trajectory.

An energy argument logically provides that the periods are no longer matched with

the added eccentricity. The in-plane phasing shows little deviation from the linear

prediction of HCW.

Figure 4.3 provides the out-of-plane ROEs; the amplitude is slightly perturbed,

reaching a minimum at apogee, and osculating the HCW value at perigee. The

maximum out-of-plane error between the HCW realization and the eccentric chief

value is on the order of 0.01 km. These observations imply that using the circular

ROEs for low eccentricity may be a favorable trade-off between model complexity and

accuracy.
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Figure 4.2: In-Plane Osculating Relative Orbit Elements with Chief Eccentricity of
0.01
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Figure 4.3: Out-of-Plane Osculating Relative Orbit Elements with Chief Eccentricity
of 0.01
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4.1.4.2 Medium-Eccentricity, Stationary Relative Orbit. Given the

following initial conditions

R0 =
[
1.3462 0.5 0.5 0 0.5 0

]
ec0 =

[
12000 0.3 0.5236 0 0 0

] (4.36)

The three-dimensional propagation using osculating ROEs as compared to the inte-

gration is shown in Fig. 4.4 The propagation compared with the numerical integration
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Figure 4.4: Three-Dimensional Relative Trajectory using Osculating ROEs Compared
to Numerical Integration with Chief Eccentricity of 0.3

is near exact. There are additional frequencies manifesting in the cross-track motion,

skewing the trajectory. The projection still remains a closed conic, with a shape that

is also skewed by additional harmonics.

Figure 4.5 provides the in-plane ROEs compared to the expected HCW values.

Immediate equality is noted again at perigee due to the absence of radial velocity.

The addition of eccentricity accelerated the HCW drift rate when compared to the

eccentric motion. The semi-major axis now becomes more of an indication of the
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magnitude of the radial and in-track oscillations, which have significant less phase

than the circular counterpart.
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Figure 4.5: In-Plane Osculating Relative Orbit Elements with Chief Eccentricity of
0.3

The eccentricity effects seen in Fig. 4.6 decrease the magnitude of the cross-

track motion on the order of 0.25 km. The cross-track phasing lags with respect to

the HCW, showing the variance in the orbital angular momentum in comparison to

the circular assumption.
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Figure 4.6: Out-of-Plane Osculating Relative Orbit Elements with Chief Eccentricity
of 0.3

4.1.5 Physical Interpretation of the Osculating Relative Orbit Elements for

the Unperturbed Non-Circular Chief. For the circular chief, the ROEs elegantly

describe the geometry of the relative motion. When applied to the current scenario,

the physical significance of the ROEs encroaches a mathematical abstract. The effects

of chief eccentricity were detailed in Section 2.5.1, but can also be observed in time-

response of the newly derived ROEs.

Focusing solely on the radial and in-track motion, the in plane projection of the

relative trajectory is found now as the locus of points (x, y) such that

(
x(t)− xd(t)

ae(t)

)2

+

(
y(t)− yd(t)

2ae(t)

)2

= 1 (4.37)

This implies directly that the position (x, y) is the solution to Eq. 4.37 given the

ROE parameterization R(t). This describes the motion of a 2×1 ellipse whose center

is translating in the plane according to the trajectory of (xd, yd). The semi-major axis

of the instantaneous ellipse is time-varying according to the function ae(t). Moreover,

as the ellipse may intersect with the true trajectory at multiple points, the location
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described at time t can be located through the phasing angle β. Figure 4.7 provides

a visualization of this application, where E denotes the osculating ellipse, and R(t) is

the ROE parameterization at time t. This description fits perfectly with the idea of

In‐track

11 ( )t  R

1
In‐plane motion

1

Radial

2 2( )t  R

Figure 4.7: In-Plane Relative Orbit Element Characterization for the Eccentric Chief

an osculating relative orbit. If at a time t, the calculated ROE space were initialized,

the osculating ellipse entirely describes the relative trajectory if the chief eccentricity

were not present. However, the inclusion of the eccentricity terms yields a different

response on the true trajectory, and the osculating ellipse simply coincides with the

instantaneous position terms as a function of the parameterization. An interesting

note is that when the orbit is bounded, as the chief approaches the initial conditions,

the osculating ellipse becomes coplanar with the HCW ellipse.

The motion of the osculating ellipse, termed by the author as the osculational

translation, is also an indication of the offset of the ROE parameterization from the

true solution. The osculating semi-major axis scales the magnitude and places the

in-plane components with respect to the phasing, and the offsets compensate for the

remainder of any deviation. A typical plot of the osculational translation is found in
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Fig. 4.8 where the (xd, yd) trajectory the center of the given osculating ellipse. (This
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Figure 4.8: Osculational Translation

example was generated using a chief with 9000 km semi-major axis, 0.3 eccentricity,

15 degree inclination, and all other orbital elements as zero, with a Cartesian LVLH

initial condition of [ρ, ρ̇]T = [0, 0.005, 0.001, 0.001, 0, 0.001]T (km,km/s)).

The cross-track motion is far less complicated for this unperturbed case. The

out-of-plane motion remains uncoupled but is attenuated from the HCW solution as

a function of the eccentricity as

z(t) = zmax0Z(t) sinψ(t) (4.38)

The form of Eq. 4.38 shows the HCW cross-track maximum, but is modified by the

product Z(t) sinψ(t). This will be referred to as the cross-track attenuation, and

forces a dampening in amplitude and skewness. Figure 4.9 provides an example of

the cross-track motion normalized by the HCW expected maximum (using the same

initial conditions as the previous example). Inspection of Fig. 4.9 reveals extrema
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Figure 4.9: Cross-Track Attenuation

values of the attenuation, showing an actual maximum amplification. This will occur

when the cross-track phasing is orthogonal to the in-plane motion (ψ = 0). This

shows a highly-coupled relationship with the true-anomaly and mean motion of the

chief, and also indicates a maxima on an elliptical cylinder containing the entirety

of the stationary trajectory, or of an instantaneous elliptic cylinder containing the

instantaneous motion of the drifting trajectory. In addition, the cross-track phasing

simply provides directionality to the magnitude.

At any point in the trajectory, the instantaneous ellipse shows the behavior of

the HCW realization. This means that if the model were initialized at any time t,

the osculating ellipse is the HCW realization using the relative state at t as its initial

conditions. It has been demonstrated that the eccentric ROEs equate to the circular

ROEs at perigee. This is resulting from the fact that for any closed orbit, the velocity

at perigee is purely tangential with no radial component. At each other point in the

relative trajectory, the chief has a radial component that skews the ideal 2× 1 ellipse.

The idea of the osculating ellipse becomes a mathematical abstract to describe the
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resulting relative trajectory, as in this sense the geometric parameterization is now

a locus of solutions to a time variant ellipse . Although the physical significance of

the ROEs tends to break down, the parameters still describe certain properties. The

following details the physical properties of the eccentric ROEs

• The parameter ae does describe the semi-major axis of the in-plane projection

of the HCW trajectory if the model were initiated at at time t with initial con-

ditions x(t), y(t). However, it also helps determine the instantaneous maximum

amplitude of the radial (ae(t)/2) and in-track motion (ae(t)).

• The parameters xd and yd do detail the center of the osculating ellipse. However,

in the eccentric ROE scenario, they describe the offset of the radial and in-track

motion.

• The angles β and ψ remain as indications of the in-plane and cross-track phasing

frequencies, but lose true physical interpretation.

• The parameter zmax indicates the instantaneous maximum magnitude of the

cross-track motion.
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4.2 The Perturbed, Circular Chief

4.2.1 Relative Orbit Elements for the Perturbed, Circular Chief Using Geo-

metrical Insight and Linearized Mapping. It has been shown that relaxation of the

circular assumption complicates the physical interpretation of the ROEs. However,

their applicability to low eccentricity references orbits still holds. The focus of this

study now moves to how the equatorial bulge of the psuedo-spherical Earth impacts

the circular development.

4.2.1.1 Derivation of Relative Orbit Elements for the Unperturbed Cir-

cular Chief using Orbital Element Differences. As a means to gain expectations for

the behavior of the relative geometry, an analytical exercise is first performed, using

the Gim-Alfriend mapping between Cartesian and orbital element differences [8]

X(t) = (A(t) + αB(t)) δe(t) (4.39)

Where δe(t) = ed − ec are the orbital element differences at a time t. To gather a

more intuitive understanding, the restriction is made to work in mean orbital element

space. The unperturbed portion A from condenses to

A =



1 0 0 −R cos θ −R sin θ 0

0 0 0 Vt sin θ −Vt cos θ 0

0 R 0 0 0 R cos i

−3Vt

2R
0 0 2Vt cos θ 2Vt sin θ 0

0 0 R sin θ 0 0 −R sin i cos θ

0 0 Vt cos θ 0 0 Vt sin θ


(4.40)
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while the mean perturbed B̄ portion from [8] reduces to

B̄ =



0 0 0 0 0 0

0 0 0 (5 cos2 i−1)(−n sin θ)

4R

(5 cos2 i−1)(n cos θ)

4R 0

0 0 0 0 0 0
7n cos2 i

4R2 0 n sin i cos i
2R 0 0 0

0 0 0 0 0 0

− 7n cos θ sin i cos i
4R2 0 − 2n cos θ sin2 i

4R 0 0 0


(4.41)

At this point, it is desired to express the unperturbed relative orbit elements as func-

tions of the unperturbed orbital element differences; this is achieved by setting α equal

to zero in Eq. 4.39. Also inserting the circular assumption, the state transformation

becomes

x

ẋ

y

ẏ

z

ż


=



1 0 0 −a cos θ −a sin θ 0

0 0 0 na sin θ −na cos θ 0

0 a 0 0 0 a cos i

−3n
2

0 0 2na cos θ 2na sin θ 0

0 0 a sin θ 0 0 −a sin i cos θ

0 0 na cos θ 0 0 na sin θ





δa

δθ

δi

δq1

δq2

δΩ


(4.42)

where θ is now the argument of true latitude, Vt is the tangential velocity (mean

motion for this specific example), and all other variables are previously defined. This

can be expanded and substituted into the ROE expressions with easy verification to

find

ae = 2a

√
(δq1)2 + (δq2)2 = 2aed

xd = δa

yd = aδθ + aδΩ cos i− 2a (δq1 sin θ − cos θδq2)

β = tan−1

(
δq1 sin θ − δq2 cos θ

δq1 cos θ + δq2 sin θ

)
zmax = a

√
(δi)2 + (δΩ sin i)2

ψ = tan−1

(
δi sin θ − δΩ cos θ sin i

δi cos θ + δΩ sin θ sin i

)
(4.43)
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Immediately, it is noted that the boundedness condition of xd = 0 easily extends to

orbital element different space as δa = 0 (the equal period condition). Also of note

is that the non-constant values (yd, β, ψ) remain the same. As a direct fallout, these

expressions are near identical to parameters developed by Schaub [30]. When the

expression given in Eq. 4.43 for zmax is divided by the semi-major axis, the resulting

expression is given by Schaub as the angle between the orbit planes of the deputy and

the chief. This implies that the zmax/a is a spherical tilt angle between the two orbit

planes for very small orbital element differences. The inquisitive response to this is

how the J2 perturbation will affect these expressions.

4.2.1.2 Osculating Relative Orbit Elements from the J2 Effect using Or-

bital Element Differences: An Analytical Approach. The objective now is to derive

the mean effects of J2 on the relative orbit elements. Using the mean secular J2 time

rates, the following linear relationships are developed based on the secular drift in the

orbital elements

δa = δa0

δq1 = q1 = q10 cos (ω̇∆t)− q20 sin (ω̇∆t)

= ed cosω(t)

δq2 = q2 = q10 sin (ω̇∆t) + q20 cos (ω̇∆t)

= ed sinω(t)

δΩ = δΩ0 + δΩ̇∆t

δθ = δθ0 + δθ̇∆t

δi = δi0

(4.44)

where ed is the eccentricity of the deputy. Direct state substitution can now be used to

examine the effect on the unperturbed ROEs. Beginning with the relative semi-major
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axis

ae = 2a

√
(δq1)2 + (δq2)2

= 2a

√
(ed cos (ω(t)))2 + (ed sin (ω(t)))2

āeJ2 = 2aed

(4.45)

This implies that even under J2 the mean relative semi-major axis of the relative for-

mation remains equivalent to the unperturbed case. Similarly, the radial displacement

is nominally found as xd = δa, and assuming mean secular rates, this value remains

unchanged under the perturbation; thus,

x̄dJ2 = δa (4.46)

The in-track displacement is effected by the perturbation. Substituting state expres-

sions into the yd component of Eq. 4.43, it is found that

ȳdJ2 = aδθ(t) + aδΩ(t) cos i− 2aed (sin θ cosωd − cos θ sinωd) (4.47)

Substituting Eq. 4.44 into Eq. 4.47, using the defintion of the true latitude (θ = ω+ν)

and using a double-angle trigonometric identity yields,

ȳdJ2 = aδθ0 + a (δω̇ + δν̇) ∆t+ a
(
δΩ0 + δΩ̇∆t cos i

)
+ 2aed sin (ωd − θ)

= a (δθ0+ δΩ0) + a
(
δω̇ + δν̇ + δΩ̇ cos i

)
∆t+ 2aed sin (ωd − θ)

(4.48)

Immediately it is observed the same constant offset term based on the initial argument

of latitude and ascending node is present. A periodic term arises that induces an

oscillation at a frequency of the difference between the deputy perigee and chief true

latitude. The additional term to the in-track offset is the inclusion of the perigee and

ascending node rates. Secular drift in track is manifest in this condition, which implies

that δθ̇ = δω̇ + δν̇ = −δΩ cos i will limit the in-track drift. Finishing the in-plane
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motion with the perturbed phasing angle and substituting the perturbed states

β̄J2 = tan−1

(
δq1 sin θ − δq2 cos θ

δq1 cos θ + δq2 sin θ

)
β = tan−1

(
sin (θ − ωd)
cos (θ − ωd)

)
β̄J2 = (θ − ωd)

(4.49)

This is the identical expression for the unperturbed motion; however, the argument

of perigee term now has a secular drift from the J2 effect, implying that the frequency

of the phasing goes as

˙̄βJ2 = θ̇ + ω̇d (4.50)

Letting θ̇ for the circular chief be expressed as n+ ω̇, the in-plane phasing frequency

is found as

˙̄βJ2 = n− δω̇ (4.51)

where δω̇ = ω̇d − ω̇c.

Focusing in the cross-track direction, the maximum amplitude is found as just

a slight modification of the unperturbed form as

z̄maxJ2 = a

√
(δi0)2 +

(
δΩ̇ sin i0∆t

)2

(4.52)

Thus, there is a secular drift in the cross-track direction. This can be eliminated if

the ascending node rates (δΩ̇) are matched. If not, the cross-track magnitude will

increase in time at a nearly first order rate. However, for a chief with zero inclination,

the cross-track amplitude will remain constant. Finally, the cross-track phasing is

found as

ψ̄J2 = tan−1

(
δi sin θ − cos θ sin iδΩ̇∆t

cos θδi+ sin θ sin iδΩ̇∆t

)
(4.53)

73



Summarizing, analytical expressions for the mean response of the ROEs for a

circular chief are

āeJ2 = 2aed

x̄dJ2 = δa

ȳdJ2 = a (δθ0 + δΩ0 cos i) + a
(
δω̇ + δν̇ + δΩ̇ cos i

)
∆t+ 2aed sin (ωd − θ)

β̄J2 = (θ − ωd)

z̄maxJ2 = a

√
(δi0)2 +

(
δΩ̇ sin i0∆t

)2

ψ̄J2 = tan−1

(
δi sin θ − cos θ sin iδΩ̇∆t

δi cos θ + sin θ sin iδΩ̇∆t

)
(4.54)

These equations illustrate the importance of matching the drift rates of the chief and

deputy ascending nodes and arguments of perigee for formation keeping.

4.2.1.3 Osculating Relative Orbit Elements from the J2 Effect using Or-

bital Element Differences: An Analytical Jacobian Approach. As a primarily ana-

lytical exercise, one can also look at how the ROEs will change as a function of time

using a perturbation approach to verify the previous section’s state substitution. Let

the solution vector X equate to the six ROEs, and let the state vector δe equal to the

non-singular orbital element differences between the chief and deputy. To examine

the effect of J2 on the ROEs, we perform the following Jacobian operation

∂X

∂t
=
∂X

∂δe

∂δe

∂t
(4.55)

where

∂X

∂δe
=


∂ae

∂δa
... ∂ae

∂δΩ
...

. . .
...

∂ψ
∂δa

. . . ∂ψ
∂δΩ

 (4.56)

The partials in Eq. 4.56 can be found by taking partials of Eq. 4.43 with respect

to the orbital element differences. For this exercise, only the spatial ROEs will be
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examined, while the phasing angles are left for future work. The mean secular J2

rates are used. The time rate of the orbital element differences is expressed as

∂δa
∂t

∂δθ
∂t

∂δi
∂t

∂δq1
∂t

∂δq2
∂t

∂δΩ
∂t


=



0

δθ̇

0

q̇1d

q̇2d

δΩ̇


(4.57)

The resulting matrix math needed is then

∂X

∂δe
=


∂ae

∂δa
... ∂ae

∂δΩ
...

. . .
...

∂ψ
∂δa

. . . ∂ψ
∂δΩ





0

δθ̇

q̇1d

q̇2d

0

δΩ̇


(4.58)

As a result, only the second through fourth and sixth columns of ∂X
∂δe

are necessary.

The semi-major axis ae and radial displacement are found as functions of solely a, ed,

and δa; thus, partials of these expressions with respect to any other variable is zero.

Directly ae and xd remain constant–that is,

∂ae
∂t

= 0

∂xd
∂t

= 0

(4.59)
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However, examining the in-track displacement and cross-track amplification, the re-

lationship is less linear. The resulting expressions become

∂yd
∂t

=
∂yd
∂δθ

δ̇θ +
∂yd
∂δq1

q̇1d +
∂yd
∂δq2

q̇2d +
∂yd
∂δΩ

˙δΩ

∂zmax
∂t

=
∂zmax
∂δθ

δ̇θ +
∂zmax
∂δq1

q̇1d +
∂zmax
∂δq2

q̇2d +
∂zmax
∂δΩ

˙δΩ

(4.60)

Immediately from Eq. 4.43, each partial of yd exists, while only the partial of zmax

with respect to δΩ is non-zero. The gradient of yd is found as

∂yd
∂δθ

= a

∂yd
∂δq1

= −2a sin θ

∂yd
∂δq2

= 2a cos θ

∂yd
∂δΩ

= a cos i

(4.61)

while for zmax we find
∂zmax
∂δΩ

= −a
2δΩ sin2 i

zmax
(4.62)

Combining the above results, the time rate for yd is now

∂yd
∂t

= aδθ̇ − 2a sin θq̇1d + 2a cos θq̇2d + a cos i ˙δΩ

= a
(
δθ̇ + 2 (q̇2d cos θ − q̇1d sin θ) + δΩ̇ cos i

) (4.63)

and for the zmax time rate

∂zmax
∂t

= −a
2δΩ sin2 i

zmax
δΩ̇ (4.64)

And if we express δΩ = δΩ̇∆t, Eq. 4.64

∂zmax
∂t

= − a2

zmax
sin2 i(δΩ̇)2∆t (4.65)
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Although not in exact agreement, this expression shows the same trend in the zmax

parameter when compared to Eq. 4.54. Equation 4.65 shows a linear time-rate, while

Eq. 4.54 shows a relationship on the order of
√

∆t2. The two expressions appear to

have time rates on the same order of magnitude.
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4.2.2 Relative Orbit Elements for the Perturbed, Circular Chief Developed by

the Schwieghart-Sedwick Differential Equations with Arbitrary Initial Conditions.

The following section details the development of the ROEs from solving the differential

equations and setting arbitrary initial conditions. From Eq. 3.12, the radial and in-

track motion is still uncoupled from the cross-track as in the HCW model. Placing

the in-plane system in matrix form as [36]


x

y

ẋ

ẏ

 =


0 0 1 0

0 0 0 1

(5c2 − 2)n2 0 0 2nc

0 0 −2nc 0




ẋ

ẏ

ẍ

ÿ

 (4.66)

This linear system can be solved using a number of different tools. The approach

taken by this author is the matrix exponential. The resulting state transition matrix

found via Φ(t, t0) = eA(t−t0) is

Φss =



B2−σ cosh(K1∆t)
K2

0 (−B2+σ) sinh(K1∆t)

(−K2)3/2

B−B cosh(K1∆t)
K2

−Bσ(K2∆t+
√
−K2 sinh(K1∆t))

K2
2

1 B(cosh(K1∆t)−1)
K2

−K2σ∆t+B2
√
−K2 sinh(K1∆t)

K2
2

−K2σ sinh(K1∆t)

(−K2)3/2 0 cosh(K1∆t) −K2B sinh(K1∆t)

(−K2)3/2

Bσ(cosh(K1∆t)−1)
K2

0 BK2 sinh(K1∆t)

(−K2)3/2

−σ+B2 cosh(K1∆t)
K2


(4.67)
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such that [x, y, ẋ, ẏ]T = Φss(t, t0)[x0, y0, ẋ0, ẏ0]T , where the constants are defined as

∆t = (t− t0)

K1 =
√
−B2 + σ

K2 = B2 − σ = −K2
1

B = 2nc

σ = (5c2 − 2)n2

c =
√

1 + s

s =
3J2R

2
e

8r2
(1 + 3 cos(2i))

(4.68)

There now exists a closed form solution of the SS differential equations regardless of

initial conditions.

4.2.2.1 Deriving the In-Plane Relative Orbit Elements. Focusing on

the in-plane motion, the state can be expressed linearly at any time as X(t) =

Φ(t, t0)X0. From Eq. 4.16, the initial Cartesian conditions were found as functions of

the initial ROEs by the following relation
x0

y0

ẋ0

ẏ0

 =


− cosβ0

2
1 0

sin β0 0 1

n
2

sin β0 0 0

n cos β0 −3n
2

0



ae0

xd0

yd0

 (4.69)

Allowing the product of time-varying matrix in Eq. 4.69 with the STM in Eq. 4.67 to

be expressed as J(t), the instantaneous ROEs are found as R(t) = Λ (J(t)Ri0), where

Λ is the transformation from Cartesian to ROE space, and Ri0 =
[
ae0 xd0 yd0

]T
is

the initial in-plane spatial ROEs. Now knowing the necessary operations, the only

remaining issue is the algebraic derivation. For simplicity, it is desired to express the
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in-plane relative position in the following form

x = C1 + ζx1 cosh θ + ζx2 sinh θ

y = C2 + ζy1 cosh θ + ζy2 sinh θ + ϕ∆t
(4.70)

The expression in Eq. 4.70 is the X = J(t)Ri0 function. Performing the matrix

multiplication and grouping like terms, the constants in Eq. 4.70 are found as

C1 = xd0

(
B2

K2

− 3Bn

2K2

)
+ ae0

(
B cos β0

K2

− B2 cos β0

2K2

)
C2 = yd0 + ae0

(
sin β0 −

Bn sin β0

2K2

)
ζx1 = xd0

(
3Bn

2K2

− σ

K2

)
+ ae0

(
−B cos β0

K2

+
σ cos β0]

2K2

)
ζx2 =

ae0n sin β0

2
√
−K2

ζy1 =
ae0Bn sin β0

2K2

ζy2 = xd0

(
3B2n

2(−K2)3/2
− Bσ

(−K2)3/2

)
+ ae0

(
−B

2 cos β0

(−K2)3/2
+

Bσ cos β0

2(−K2)3/2

)
ϕ = xd0

(
−Bσ
K2

+
3nσ

2K2

)
+ ae0

(
−σ cos β0

K2

+
Bσ cos β0

2K2

)
θ = K1∆t

(4.71)

Also from Eq. 4.70, time derivatives provide the relative velocities to be

ẋ = θ̇ (ζx1 sinh θ + ζx2 cosh θ)

ẏ = θ̇ (ζy1 sinh θ + ζy2 cosh θ) + ϕ (4.72)

where θ̇ = K1.

Having condensed forms of the relative trajectory expressions, the in-plane por-

tion of the Λ transformation is now possible. Beginning with the semi-major axis ae,
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define the following two variables

ae1 =
ẋ

n

=
θ̇

n
(ζx2 cosh θ + ζx1 sinh θ)

ae2 = 3x+ 2
ẏ

n

= 3 (C1 + ζx1 cosh θ + ζx2 sinh θ) +
2θ̇

n
(ζy2 cosh θ + ζy1 sinh θ)

(4.73)

such that the final expression for ae becomes by simple substitution

ae = 2
√
a2
e1 + a2

e2 (4.74)

which is seen as the combination of hyperbolic trignometric functions at a frequency

of θ̇.

The in-plane displacements along the radial and in-track directions can be writ-

ten as a linear combination. Using the expressions from Eq. 2.59

xd = 4x+
2ẏ

n

yd = y − 2ẋ

n

(4.75)

Substitution of Eq. 4.70 and Eq. 4.72 and grouping terms according to the trigono-

metric terms, it is observed thatxd
yd

 =

4ζx1 + 2θ̇ζy2

n
4ζx2 + 2θ̇ζy1

n

ζy1 − 2θ̇ζx2

n
ζy2 − 2θ̇ζx1

n

cosh θ

sinh θ

+

 4C1

C2 + ϕ∆t

 (4.76)

The in-plane phasing is finally found as

β = tan−1

(
ẋ

3nx+ 2ẏ

)
(4.77)
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and using the previously defined variables ae1 and ae2 from Eq. 4.73, we find

β = tan−1

(
ae1
ae2

)
(4.78)

4.2.2.2 Out-of-Plane Relative Orbit Elements. Schweighart and Sed-

wick [37] further defined the cross-track motion for the circular satellite under the J2

perturbation. The cross-track motion is described in [37] as

z(t) = A(t) sin (B(t)t− C(t)) (4.79)

where Schweighart denotes A(t) as the time-varying cross-track magnitude, B(t) as

the orbital frequency (which is modified under J2), and C(t) as a phasing angle.

Expressed as functions, these parameters are

A(t) = rη

B(t) = nk

k = c+ l cos2 i

l =
3J2R

2
e

2r2

(4.80)

An immediate comparison can be made to the ROE expression for the cross-track

motion

z(t) = zmax sinψ (4.81)

such that it is evident that

zmax(t) = A(t)

ψ(t) = B(t)t− C(t)
(4.82)

The time-varying magnitude A(t) is found as the product of the circular reference

orbit’s radius and the spherical angle (η) resulting from the combination of differences

between the ascending nodes and inclinations of the chief and deputy. For small
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angles, this has already been found earlier in Eq. 4.43 as zmax/r and is equal to

η =

√
(∆i)2 +

(
∆Ω sin2 i

)2
(4.83)

and develops according to

η = η0 cos γ0 sec γ (4.84)

where γ is the cross-track phasing angle, expressed for small angles as [37]

γ = cot−1

(
∆i

∆Ω sin i

)
(4.85)

Using the proposed parameterization in Eq. 4.82, and assuming t0 = 0, the angle γ

is equal to and opposite ψ at epoch. That is

ψ0 = −γ0 (4.86)

which is given by Schweighart and Sedwick as

γ0 = − tan−1

(
ż0

z0

1

n(k − b)

)
(4.87)

where b = l sin2 i. This immediately implies from Eq. 4.86

ψ0 = tan−1

(
ż0

z0

1

n(k − b)

)
(4.88)

The cross-track phasing is then given as

ψ = nkt+ ψ0 (4.89)

Turning the attention to the cross-track amplification, the expression for A(t) is given

as

A(t) = rη

= rη0 cos γ0 sec γ
(4.90)

83



Utilizing zmax = A(t) and making the substitutions zmax0 = rη0 and ψ0 = −γ0, we

arrive at

A(t) = zmax0 cosψ0 sec γ (4.91)

where γ is defined in [37] as

γ = tan−1 (nbt+ tan γ0) (4.92)

Finally, from Eq. 4.82, the cross-track amplification is found as

zmax(t) = zmax0 cosψ0 sec γ (4.93)

such that the cross-track motion is then defined as

z(t) = zmax0 cosψ0 sec γ sinψ(t) (4.94)

Utilizing the trigonometric identity

sec (arctan(x)) =
1

cos (arctan(x))

=
1
1√

1+x2

=
√

1 + x2

(4.95)

and substituting in Eq. 4.94, the final form of the cross-track motion is then found

as

z(t) = zmax(t) sinψ(t) (4.96)

where

zmax(t) = zmax0 cosψ0

√
1 + (bnt− tanψ0)2 (4.97)
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4.2.2.3 Summary of the Relative Orbit Elements for the J2 Perturbed,

Circular Chief for Arbitrary Initial Conditions. The following provides a summary

of the ROEs for the circular chief perturbed by J2.

ae = 2
√
a2
e1 + a2

e2xd
yd

 =

4ζx1 + 2θ̇ζy2

n
4ζx2 + 2θ̇ζy1

n

ζy1 − 2θ̇ζx2

n
ζy2 − 2θ̇ζx1

n

cosh θ

sinh θ

+

 4C1

C2 + ϕ∆t


β = tan−1

(
ae1
ae2

)
zmax(t) = zmax0 cosψ0

√
1 + (bnt− tanψ0)2

ψ =nkt+ ψ0

(4.98)

These expressions have been developed for arbitrary initial conditions and are not

dependent on velocity states initialized to bound the relative orbit.

4.2.3 Numerical Examples and Deviations from the Clohessy-Wiltshire As-

sumptions. As the primary assumption in the HCW realization is a circular chief,

examining the effects on the HCW ROEs from J2 is very appropriate. The stationary

relative orbits are found using the conditions detailed in Appendix F. The following

numerical examples will demonstrate the deviation of the model from HCW. Initial

conditions are given in the form R0 =
[
ae0 xd0 yd0 β0 zmax0 ψ0

]
with units of

(km,rad) where appropriate, and the chief orbital elements are given in the form

ec0 =
[
a e i ω Ω M0

]
with units of (km,rad) as well.

4.2.3.1 Relative Orbit Elements at for a Low Altitude Chief with Low

Inclination. Given the following initial conditions

R0 =
[
11.89 0.01 0.05 0 1 0.5

]
ec0 =

[
7000 0 0.1745 0 0 0

] (4.99)
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Figure 4.10 provides a visualization of the in-plane ROEs. Initial conditions

for bounded motion have been used. The expressions for these initial conditions are

derived in App. F. Of immediate note is these initial conditions supplied to the HCW

model yield a drifting trajectory (evident in yd). There are variations on the order of

101 meters in the expressions for ae, xd, and yd; however, the in-plane phasing differs

only slightly from the expected motion.
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Figure 4.10: In-Plane Osculating Relative Orbit Elements for J2 Perturbed, Low Al-
titude Circular Chief

Figure 4.11 provides a visualization of the out-of-plane ROEs. The cross-track

amplification decreases nearly linear, but at low, near negligible rate. This again is

due to the bounding condition. Differential drift rates will induce perturbations to

the orbital angular momenta of both the chief and deputy and modify the action

of the cross-track motion. The short term effect of the cross-track variation is near

negligible, but long term projections will be error prone.

86



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
999.88

999.9

999.92

999.94

999.96

999.98

1000

1000.02

Orbit

z m
ax

 (
m

)

 

 
Unperturbed
J2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-2

0

2

4

Orbit


 (

ra
d)

Figure 4.11: Out-of-Plane Osculating Relative Orbit Elements for J2 Perturbed, Low
Altitude Circular Chief
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4.3 Applications of Osculating Relative Orbit Elements

4.3.1 Guidance and Navigation.

4.3.1.1 Derivation. Having analytical expressions for the osculating

ROEs, one can examine the effect of an impulsive burn in any of the directions in the

orbital plane of the chief. The derivation begins by assuming that a single, impulsive

burn is possible and can be oriented in such a way that the burn acts entirely in the

radial, in-track, and/or cross-track directions. The derivation follows similarly to that

in [33], and focuses primarily on the idea of a single burn. Assuming knowledge of

the ROE state at the time the burn (tb) occurs, and letting the subscript pb indicate

the desired post-burn value, the expressions can be written as

aepb

xdpb

ydpb

βpb

zmaxpb

ψpb


=



aetb

xdtb

ydtb

βtb

zmaxtb

ψtb


+



∆ae

∆xd

∆yd

∆β

∆zmax

∆ψ


(4.100)

where the ∆ values indicate the contribution to the ROE provided by the impulse. If

the relative velocity is known at t = tb, then an instantaneous burn would yield the

following expressions for the ∆ components



∆ae

∆xd

∆yd

∆β

∆zmax

∆ψ


=



2

√(
∆ẋ
n

)2
+
(
3xtb + 2∆ẏ

n

)2

4xtb + 2∆ẏ
n

ytb − 2∆ẋ
n

tan−1
(

∆ẋ
3nxtb+2∆ẏ

)√(
∆ż
n

)2
+ (ztb)

2

tan−1
(
nztb

∆ż

)


(4.101)
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where the ∆ values are expressed as
∆ẋ

∆ẏ

∆ż

 =


ẋ+ ∆Vx

ẏ + ∆Vy

ż + ∆Vz

 (4.102)

One can then make the substitution using the Cartesian to ROE conversion such that

xtb = −ae− cos β−
2

+ xd−

ytb = ae− sin β− + yd−

ztb = zmax− sinψ−

(4.103)

where the minus subscript indicates the state immediately before the burn. Substitu-

tion into Eq. 4.101 yields dependence entirely on the ROE states. If the expressions

for the ∆ values in Eq. 4.101 represent desired maneuvers, Eq. 4.101 represents a

system of highly non-linear equations that can be numerically solved to determine

approximately the necessary velocity change needed to alter the relative trajectory.

4.3.1.2 Mathematical Concerns. It is quite significant to note that

the nonlinear equation set in Eq. 4.101 suffers from constraint issues. For example,

if a desired ae is selected, there are two independent variables (∆ẋ,∆ẏ) to perform

the maneuver. The out of plane motion is such that only a ∆ż will alter the cross-

track trajectory. If ∆ae is desired, an infinite amount of solutions could exist due

to the two free variables in the expression. This implies that if a ∆ae is selected,

then one of either ∆xd,∆yd,∆β should be selected additionally. Selecting either ∆xd

or ∆yd will yield a possible solution, as does the selection of both parameters. It is

nearly mathematically impossible to select both ∆ψ and ∆zmax unless selected at a

location in which ztb = 0. Based on these constraints, an arbitrary maneuver is not

mathematically possible. There are only 3 independent variables with 6 dependent

variables. One can only reach a subspace of the desired maneuver for any given
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relative state at time tb. The coupled nature of the variables is investigated in the

next section.

4.3.1.3 Numerical Examples. It is instructive here to examine the ef-

fects of impulsive burns on the analytical expressions. The entire COE set of the chief

is not needed as the only value needed from the derivation is the mean motion. The

ROEs have been treated as parameters that can be acquired via relative navigation

data, and the only needed values are those prior to the burn.

For a chief of any eccentricity representing a closed orbit with a semi-major axis

of 7000 km, the following burn time ROEs are given as

ae−

xd−

yd−

β−

zmax−

ψ−


=



0.01 km

0.01 km

0.02 km

π rad

0.01 km

0.1 rad


(4.104)

Allowing the impulses in the radial and in-track directions to vary between -

1 and 1 m/s, Fig. 4.12 provides a visualization of the coupling effect on the ROE

response.

Immediately evident is the linear response in the values for xd and yd. Also, a

linear response is noted in the response for zmax. The most non-linear is the response

of the semi-major axis, which forms an open shape resembling a paraboloid that grows

without bound. Resulting spatial responses regardless of initial conditions take the

same form as a consequence of the deterministic derivation.
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Figure 4.12: Coupling Among the Spatial ROEs with Respect to Three-Dimensional
Impulsive Velocity Burns
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V. Conclusions and Future Work

5.1 A Dialogue on the Realism of Osculating Relative Orbit Elements

Within this thesis, a method has been shown to parameterize the relative tra-

jectory of two satellites in close proximity using geometric insight. The effects of the

chief eccentricity and the J2 perturbation on the circular chief have been investigated.

For the latter, mean J2 effects have been found to serve as a main variable of drift

dependence. Perturbations in the relative orbits will only further compound in the

relative dynamics. If attempting to attain geometrical insight, full inclusion of the

chief eccentricity forces the model into the domain of mathematical abstraction; how-

ever, the relative orbit element (ROE) parameterization still serves as a methodology

to determine the instantaneous magnitude and phasing of the oscillatory motion, in

addition to a time-variant offset.

Relative motion is an abstract concept, and quite difficult to visualize without

in-depth study. Oscillating relative trajectories from differential orbits and energy

exchange are difficult concepts to grasp. More so, even the time-varying, rotating

local-vertical, local-horizontal (LVLH) orbital frame in which the relative dynamics

occur is an abstract notion. These factors compound and convolute mission critical

objectives including relative navigation, guidance and control, and docking maneu-

vers. The idea is to obtain a geometrical parameterization that allows an operator

to quickly visualize the relative motion and further the mission of close proximity

operations. However, the osculating eccentric ROEs fail to meet this objective in this

study; the mathematical notion of a locus of points satisfying a 2× 1 ellipse does not

match criteria of operational efficacy. For LEO missions, the use of a J2 perturbed set

will lead to higher accuracy in navigation; in contrast, the physical near impossibility

of a true circular orbit may lead to eccentricity effects dominating the perturbations.

In this study, the mathematics have been done to fully show how the ROE

parameterization grows over time with state substitution relaxing the unperturbed

and the circular chief assumption. The motion was found to be fully mapped by

these analytical expressions. Moreover, closed-form expressions for the relative orbit
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elements to include these effects now exist. Further work is still needed to develop a

fully intuitive and geometrically insightful parameterization to visualize and control

the relative motion of bodies in close proximity.

5.2 Recommendations for Future Work

Throughout the course of this study, several alternate routes have been found

that may be followed in the future. These may help further the use of the ROEs to

finally develop a parameterization encompassing eccentricity and the J2 perturbation.

5.2.1 Velocity Independence. The expressions for the ROEs include substi-

tution of the relative velocity states. If one is comparing ROE states across various

perturbed environments, the rotation of the LVLH frame induces different angular

velocities. These angular velocities modify the velocity states significantly. The non-

linear operations on the relative velocity terms compound differences. A proposed

route is now to investigate the analytical HCW expressions to find ROE expressions

that are simply functions of the relative position terms. This has been done using

orbital element differences. The estimation of inertial positions and velocities with

conversions to two sets of orbital elements is possible; however, linearizations in the

model limit the range of applicability of this method. Therefore, it is highly desired to

identify relative orbit elements as functions of position. Furthermore, it is recommend

that a parameterization be made that is based on a model developed in inertial space.

5.2.2 Mathematical Inspection of the Yamanaka-Ankersen Topology. Simi-

lar to re-parameterizing the ROEs based on relative position terms, the Yamanaka-

Ankersen model needs to be investigated and placed into a form to understand the

resulting topology. The uncoupled out-of-plane and in-plane motion should be ana-

lyzed separately and later superimposed. This was somewhat attempted during this

study with little gain. Placing the closed form solution into an expression that is a

93



function of the eccentricity of the chief in addition to initial conditions could motivate

topological intuition.

5.2.3 Higher-Order Terms in the Virtual Chief Model. Propagation of the

relative motion using a virtual chief approach could yield intuitive results if the accu-

racy of the model were increased. A linear state transition matrix was developed by

Johnson [27] but was found to be error prone. The idea of retaining higher order terms

in the close proximity linearization of the HCW model would undoubtedly increase

the accuracy of the dual propagation.

5.2.4 Drag Effects on the Relative Orbit Elements. Inherent in the assump-

tion in the ROE development is the idea of near identical ballistic coefficients yielding

identical drag effects. An interesting route of study is to examine analytically the

effects on the ROEs including the effects of atmospheric drag. As certain ROEs have

been found to be functions of orbital element differences, the induced energy decay

of the orbits would also effect the ROE parameters.

5.2.5 Perturbation Methods. Rather than performing full state substitution

of closed-form solutions into the ROE parameterization, a worthwhile study would

be to examine the effect of the ROEs using the following method. Let R denote the

ROE states, and X denote the relative Cartesian state. The differential states can

then be examined by

δR =
∂R

∂X
δX (5.1)
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Appendix A. State Transition Matrix Properties

The state transition matrix (STM) is a deterministic method of propagating a state

at time t0 to any time t. The following identities and concepts are presented as

fundamental and without proof.

Typically, the propagation resembles

X(t) = Φ(t, t0)X(t0) (A.1)

where X is the state vector and Φ is the STM. For a linear time-invariant system of

the form

ẋ = Ax+Bu (A.2)

where A is the plane matrix, B is the control matrix, and u is the input vector, the

solution is given, without replication of proof, as

X(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ (A.3)

with τ as a dummy variable of integration. The integral in Eq. A.3 is often termed

the convolution integral. The matrix exponential in Eq. A.3 is often represented as

eA(t−t0) = Φ(t, t0) (A.4)

For any order of linearity, the STM must satisfy the following properties

1. Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0)

2. Φ(t2, t1) = Φ−1(t1, t2)

3. Φ(t1, t1) = 1

Also as a direct consequence of Eq. A.4, the STM must also satisfy

∂Φ(t, t0)

∂t
= AΦ(t, t0) (A.5)
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Appendix B. Derivation of the Eccentric Osculating Relative Orbit

Elements

The following appendix provides a more detailed derivation of the eccentric ROEs

using state substitution. Defining the in-plane state vector
[
x y ẋ ẏ

]T
as X, it is

known from Sec. 4.1 that

X = B(t)Λip0 (B.1)

where Λip0 =
[
ae0 xd0 yd0

]T
, and the 4 × 3 matrix B(t) is described in variables

defined in Sec. 4.1 as

B(t) =


B11 . . . B13

...
. . .

...

B41 . . . B43

 (B.2)

Combining the above expressions, expressions for the states are found carrying out

the multiplication as

x = B11ae0 +B12xd0 +B13yd0

y = B21ae0 +B22xd0 +B23yd0

ẋ = B31ae0 +B32xd0 +B33yd0

ẏ = B41ae0 +B42xd0 +B43yd0

(B.3)

Now, making use of our state substitution method, the ROE expressions can now be

found.

B.1 Relative Semi-major Axis, ae

From the previously described relation, ae is found as

ae = 2

√(
ẋ

n

)2

+

(
3x+

2ẏ

n

)2

(B.4)
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Substituting in the expressions for x, ẋ, andẏ, we separate the terms in parenthesis as

(
ẋ

n

)
=
B31ae0 +B32xd0 +B33yd0

n(
3x+

2ẏ
n

)
=
(

3B11 +
2B41

n

)
ae0 +

(
3B12 +

2B42

n

)
xd0 +

(
3B13 +

2B43

n

)
ae0

(B.5)

Squaring the two expressions in Eq. B.5

(
ẋ

n

)2

=
a2
e0B

2
31

n2
+
x2
d0B

2
32

n2
+
y2
d0B

2
33

n2
+ ...

+
2ae0xd0B31B32

n2
+

2ae0yd0B31B33

n2
+

2xd0yd0B32B33

n2(
3x+

2ẏ
n

)2

= a2
e0

(
9B2

11 +
4B2

41

n2
+

12B11B41

n2

)
+ x2

d0

(
9B2

12 +
4B2

42

n2
+

12B12B42

n2

)
+ ...

+ y2
d0

(
9B2

13 +
4B2

43

n2
+

12B13B43

n2

)
+ ...

+ ae0xd0

(
18B11B12 +

8B41B42

n2
+

12B12B41

n
+

12B11B42

n

)
+ ...

+ ae0yd0

(
18B11B13 +

8B41B43

n2
+

12B13B41

n
+

12B11B43

n

)
+ ...

+ xd0yd0

(
18B12B13 +

8B42B43

n2
+

12B13B42

n
+

12B12B43

n

)

(B.6)

Now, collecting like terms in Eq. B.6 with respect to the initial ROEs, we can find

the α coefficients described in Sec. 4.1 and detailed in Appendix C. The resulting

groups need to be multiplied by a factor of 4 to compensate for the multiplication by

2 in Eq. B.4. For example,

α1 = 4

(
B2

31

n2
+ 9B2

11 + 4
B2

41

n2
+ 12

B11B41

n2

)
=

(
4B2

31

n2
+ 36B2

11 + 16
B2

41

n2
+ 48

B11B41

n2

) (B.7)

and the process would follow by inspection.

B.2 Radial Displacement, xd

The radial displacement is expressed as

xd = 4x+
2ẏ

n
(B.8)
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This can be found through simple substitution as

4x+
2ẏ

n
= 4 (B11ae0 +B12xd0 +B13yd0) +

2 (B41ae0 +B42xd0 +B43yd0)

n

=

(
4B11 +

2B41

n

)
ae0 +

(
4B12 +

2B42

n

)
xd0 +

(
4B13 +

2B43

n

)
yd0

= σ1ae0 + σ2xd0 + σ3yd0

(B.9)

B.3 In-Track Displacement, yd

Very similar to the radial displacement, the in-track displacement is expressed

as

yd = y − 2ẋ

n
(B.10)

and simple substitution yields

yd = y − 2ẋ

n

= (B21ae0 +B22xd0 +B23yd0)− 2 (B31ae0 +B32xd0 +B33yd0)

n

=

(
B21 −

2B31

n

)
ae0 +

(
B22 −

2B32

n

)
xd0 +

(
B23 −

2B33

n

)
yd0

= Σ1ae0 + Σ2xd0 + Σ3yd0

(B.11)

Interestingly, the two ROEs that are linear combinations remain in a similar form as

xd
yd

 =

σ1 σ2 σ3

Σ1 Σ2 Σ3



ae0

xd0

yd0

 (B.12)

B.4 In-Plane Phasing , β

The in-plane phasing is also found by simple state substitution. Expressing β

as

β = tan−1

(
ẋ

3nx+ ẏ

)
(B.13)
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Having already found expressions similar to the numerator and denominator while

finding the ae expression, the first of Eq. B.5 is multiplied by n, and the second of

Eq. B.5 is divided by n such that the resulting expression is

β = tan−1

(
B31ae0 +B32xd0 +B33yd0

(3nB11 + 2B41) ae0 + (3nB12 + 2B42)xd0 + (3nB13 + 2B43) yd0

)
(B.14)

B.5 Out-of-Plane ROEs

The out-of-plane ROEs were derived in Sec. 4.1 and followed a rather simple

development.
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Appendix C. Time-Varying Parameters of the Yamanaka-Ankersen

Derived Relative Orbit Elements

The following describes analytically the time-varying coefficients of the relative orbit

elements for an eccentric chief. The coefficients are presented assuming an initial true

anomaly at perigee and epoch time of zero.

C.1 Matrices

C.1.1 Members of the A Matrix.

A11 = −(−1− e) (−3c (1 + e) ζ + (−1 + e2 + 3 (1 + e)) (2− 3eJs) ζ)

1− e2

A12 = 0

A13 = −(−c+ 2e) sζ2

(1− e2) k2

A14 = −
ζ
(
c (e+ 2 + 2e) ζ − (1 + e)2 (2− 3eJs) ζ

)
(1− e2) k2

A21 = 0

A22 = (1 + e) ζ

A23 = −ζ (2− e− e2) ζ − c (c− 2e)λζ

(1− e2) k2

A24 =
ζ
(
−3(1+e)2J

ζ
+ (e+ 2 + 2e)λζs

)
(1− e2) k2

(C.1)
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A31 = − 1
1− e2

(−1− e)
(
−3 (1 + e) (cγ + c′Ψ) +

(
−1 + e2 + 3 (1 + e)

) (
γ (2− 3eJs)− 3eΨ

(
Js′ + sζ2

)))

A32 = 0

A33 = − (−c+ 2e) (γs+ Ψs′) ζ
(1− e2) k2

A34 = − 1
(1− e2) k2

ζ
(

(e+ 2 + 2e) (cγ + c′Ψ)− (1 + e)2
(
γ (2− 3eJs)− 3eΨ

(
Js′ + sζ2

))
A41 =

1
1− e2

(
(−1− e)

(
−3 (1 + e) ((2c− e) Ψ + γλs) +

(
−1 + e2 + 3 (1 + e)

)(
3Ψ (1− 2eJs) +

3γJ
ζ2

))
A42 = (1 + e) γ

A43 = −ζ
((

2− e− e2
)
γ + (c− 2e) (−cγλ+ 2Ψs)

)
(1− e2) k2

A44 =
ζ

(1− e2) k2

(
(e+ 2 + 2e) ((2c− e) Ψ + γλs)− (1 + e)2

(
3Ψ (1− 2eJs) +

3γJ
ζ2

)
(C.2)

where the variables λ, γ, ζ, and Ψ are

γ = k2esζ

Ψ = k2/ζ

ζ = 1/ρ

λ = 1 + ζ

(C.3)
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C.1.2 Members of the B Matrix.

B11 = A12 sin β0 −
A11 cos β0

2
+ A14n cos β0 +

A13n sin β0

2

B12 = A11 −
3nA14

2

B13 = A12

B21 = A22 sin β0 −
A21 cos β0

2
+ A24n cos β0 +

A23n sin β0

2

B22 = A21 −
3nA24

2

B23 = A22

B31 = A32 sin β0 −
A31 cos β0

2
+ A34n cos β0 +

A33n sin β0

2

B32 = A31 −
3nA34

2

B33 = A32

B41 = A42 sin β0 −
A41 cos β0

2
+ A44n cos β0 +

A43n sin β0

2

B42 = A41 −
3nA14

2

B43 = A42

(C.4)

C.1.3 Members of the C Matrix.

C11 =
1

ρθρ∆θ

(c∆θρ0 − es0s∆θ)

C12 =
s∆θ

k2ρ0ρθρ∆θ

C21 = ρ0k
2

(
c∆θsθe− ρ2

θs∆θ

ρθρ∆θ

)
− es0k

2

(
c∆θρ

2
θ + es∆θsθ
ρθρ∆θ

)
C22 =

1

ρ0

(
c∆θρ

2
θ + es∆θsθ
ρθρ∆θ

)
(C.5)

C.1.4 Members of the D Matrix.

D11 = C11 sinψ0 + C12n cosψ0

D21 = C21 sinψ0 + C22n cosψ0

(C.6)
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C.2 Time Varying Coefficients

C.2.1 α Coefficients.

α1 = 36B2
11 +

4B2
31

n2
+

16B2
41

n2
+

48B11B41

n

α2 = 36B2
12 +

4B2
32

n2
+

16B2
42

n2
+

48B12B42

n

α3 = 36B2
13 +

4B2
33

n2
+

16B2
43

n2
+

48B13B43

n

α4 = 72B12B13 +
8B32B33

n2
+

32B42B43

n2
+

48B13B42

n
+

48B12B43

n

α5 = 72B11B12 +
8B31B32

n2
+

32B41B42

n2
+

48B12B41

n
+

48B11B42

n

α6 = 72B11B13 +
8B31B33

n2
+

32B41B43

n2
+

48B13B41

n
+

48B11B43

n

(C.7)

C.2.2 σ Coefficients.

σ1 = 4B11 +
2B41

n

σ2 = 4B12 +
2B42

n

σ3 = 4B13 +
2B43

n

(C.8)

C.2.3 Σ Coefficients.

Σ1 = B21 −
2B31

n

Σ2 = B22 −
2B32

n

Σ3 = B23 −
2B33

n

(C.9)
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Appendix D. Translational Osculation for the J2 Perturbed Circular

Chief

This appendix derives the trajectory of the translational osculation described in Sec.

4.2.2. Beginning with the expressions for xd and yd as

xd = 4x+
2ẏ

n

yd = y − 2ẋ

n

(D.1)

Using the closed-form non-hyperbolic expressions given in [37], the in-plane relative

positions and velocities are given as
x

y

ẋ

ẏ

 =


cos θ g

2c
sin θ

2c
g

sin θ cos θ

−θ̇ sin θ θ̇g
2c

cos θ

−2cθ̇
g

cos θ −θ̇ sin θ


x0

y0

 (D.2)

where θ = gnt and ˙theta = gn, with g defined previously in Sec. 4.2.2. Evaluating xd

and yd at an epoch time, and inserting the SS relative velocities, we can express the

xd0 and yd0 directly proportional to x0 and y0. This is seen via Eq. D.3

xd0 = 4x0 + 2
ẏ0

n

= 4x0 + 2

(
−2cnx0

n

)
= 4 (1− c)x0

yd0 = y0 − 2

(
2ẋ0

n

)
= y0 − 2

(
ng2y0

2c

n

)

=

(
1− g2

c

)
y0

(D.3)
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After some simplification, substitution of the initial conditions of Eq. D.3 into

Eq. D.2, and the resulting substitution into Eq. D.1 yields the following closed form

expressions for xd and ydxd
yd

 =

 cos θ κ sin θ

−κ−1 sin θ cos θ

xd0

yd0

 (D.4)

where κ = 2(c−1)g
g2−c . This looks very familiar when compared to a parameterized ellipse.

We can now attempt to quantify the geometry of this ellipse. For now, assume a

dummy magnitude C such that Eq. D.4 is written as

xd = C

(
xd0 cos θ

C
+
κyd0 sin θ

C

)
yd = C

(
−xd0 sin θ

κC
+
yd0 cos θ

C

) (D.5)

Now, define the following dummy phase angles as

sin δ =
xd0

C

cos δ =
κyd0

C

(D.6)

Substituting Eq. D.6 in Eq. D.5 now gives

xd = C (sin δ cos θ + cos δ sin θ)

yd = −Cm (sin δ sin θ − cos δ cos θ)
(D.7)

where m = κ−1. Applying angle addition trig identities

sin (α + β) = sinα cos β + cosα sin β

cos (α + β) = cosα cos β − sinα sin β
(D.8)
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we can collapse the xd and yd expressions to

xd = C sin (δ + θ) yd = Cm cos (δ + θ) (D.9)

We now need to find the magnitude C by examining the xd expression. Looking at

the xd component of Eq. D.9 and comparing with the xd component of Eq. D.5, we

observe the equality

C sin (δ + θ) = xd0 cos θ + κyd0 sin θ (D.10)

Using the expression for the linear combination of trigonometric functions

a sinx+ b cosx = r sin (x+ α) (D.11)

where α = sin−1 (b/r) and r =
√
a2 + b2. Defining the oscillation C as Υ, we find the

expression for the oscillation as

Υ =
√
x2
d0 + κ2y2

d0 (D.12)

Such that the final expression for the xd and yd trajectory is

xd = Υ sin (θ + δ0)

yd = Υm cos (θ + δ0)
(D.13)

where

Υ =
√
x2
d0 + κ2y2

d0

θ = gnt

δ0 = sin−1
(xd0

Υ

)
κ =

2 (c− 1) g

g2 − c

(D.14)
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This is the equation for an ellipse centered at the origin with a semi-major axis

of Υ/κ and a semi-minor axis of Υ. The value for κ is a fixed constant. The inverse

of this value is approximately 1.5 (1.499574...). This implies that for a circular chief

perturbed by J2, the motion of the center of the 2 × 1 osculating ellipse follows an

approximately 1.5 × 1 ellipse with magnitude solely determined by the initial radial

and in-track displacements.
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Appendix E. Circularizing the Virtual Chief Parameters

The following is a description of the mathematics to enforce the circular chief assump-

tion into the six geometric parameters defining the initial conditions of the Virtual

Chief model. This is not a primary objective of this study and is an exercise desired

by the research sponsor . The process begins with a description of the parameters,

simplifications with the circular assumption, and follows with the algebraic manipu-

lation and observations to correlate the parameters with the relative orbit elements.

The six Virtual Chief parameters are

• A1: An indication of the scale of the periodicity of the deputy motion

• φ1: Initial phase angle in-plane; also controls deputy’s epoch location along with

the skewness and orientation of the trajectory

• A2: A scaling of the drift rate; approximate in-plane bounded center is also

located at (0, A2, 0)

• φ2: Directly controls the drift rate

• zmax: Maximum amplitude of the deputy’s out of plane motion

• Ψ0: Initial phase angle of the deputy’s out of plane motion

Defining the Virtual Chief parameters as the set Ξ such that

Ξ = [A1φ1A2φ2zmaxΨ0] (E.1)
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The set can then be defined by the following six relations

A1 =
3

2

√
D2 + (3A+ 2C)2

φ1 = nct0 + atan2(3A+ 2C,D)

A2 =
√

(B − 2D)2 + (4A+ 2C)2

φ2 = atan2(4A+ 2C,B − 2D)

zmax =

√
z2

0 + (
ż0

nc
)2

Ψ0 = atan2(z0,
ż0

nc
)

(E.2)

Where nc is the mean motion of the chief, and the variables A,B,C, andD in Equation

E.2 are intermediate parameters defined as

A = cos(νc0 −Mc0)x0 − sin(νc0 −Mc0)y0

B = sin(νc0 −Mc0)x0 + cos(νc0 −Mc0)y0

C =
1

nc
sin(νc0 −Mc0)(ẋ0 − (ν̇c0 − nc)y0) + cos(νc0 −Mc0)(ẏ0 − (ν̇c0 − nc)x0)

D =
1

nc
cos(νc0 −Mc0)(ẋ0 − (ν̇c0 − nc)y0) + sin(νc0 −Mc0)(ẏ0 − (ν̇c0 − nc)x0)

(E.3)

The variables ν and M in Equation E.3 refer to the true and mean anomalies of

the chief, respectively. Immediately, the set A,B,C, and D can be reduced enforcing

the circular assumption by noting that for a body in a circular orbit, the true and

mean anomalies will be equivalent; this immediately will force the cosine terms to

unity and null the sine terms in the parameters. The next simplification comes from

noting that the time derivative of the true anomaly is equivalent to the mean motion

of the circular chief. Substitution of these observations allow Equation E.3 to become
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A = x0

B = y0

C =
ẏ0

nc

D =
ẋ0

nc

(E.4)

Having the circular intermediate parameters (Eq E.4), we can now reduce the com-

ponents of Ξ individually.

E.1 Simplifying A1

Enforcing the circular assumption into A1, the parameter becomes

A1 =
3

2

√
D2 + (3A+ 2C)2

=
3

2

√
(
ẋ0

nc
)2 + (3x0 +

2ẏ

nc
)2

(E.5)

An immediate observation is the similarity to the semi-major axis of the relative orbit

in the Clohessy-Wiltshire equations from the ROE set, ae

ae = 2

√
(
ẋ

nc
)2 + (3x+

2ẏ

nc
)2 (E.6)

By obvious inspection, the first parameter is a linear mapping to the relative orbit

element ae by a simple scaling factor. Evaluating Equation E.6 at epoch, it is apparent

that

A1 =
3

4
ae (E.7)

E.2 Simplifying φ1

Earlier it was noted that

φ1 = nct0 + atan2(3A+ 2C,D) (E.8)
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Using the relation for φ1, and substituting in the circular constraints, and assumping

that t0 is equivalently 0, φ1 becomes

φ1 = nct0 + atan2(3A+ 2C,D)

= atan2(3A+ 2C,D)

= atan2(3x+
2ẏ

nc
,
ẋ

nc
)

(E.9)

The ROE parameter β is defined as

β = atan2(ẋ, 3ncx+ 2ẏ) (E.10)

The two expressions in Equations E.9 and E.10 are very similar. In fact, the

argument in the atan2 functions are simply inverted, and the following identity can

be utilized

arctan(x−1) =
π

2
− arctan(x) (E.11)

This is a well known triginometric identity and is used without proof, but observing a

simple right triangle will yield this same result. Using this expression and observing

the epoch conditions on β

φ1 = atan2(3x+
2ẏ

nc
,
ẋ

nc
)

β = atan2(
ẋ

nc
, 3x+

2ẏ

nc
)

(E.12)

The claim is made that the parameter φ1 condenses to the following for a circular

chief

φ1 =
π

2
− β (E.13)
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E.3 Simplifying A2

The parameter A2 is defined in E.2 and upon the circular substitution, the

following is found

A2 =
√

(B − 2D)2 + (4A+ 2C)2

=

√
(y − 2ẋ

nc
)2 + (4x+ 2

ẏ

nc
)2

(E.14)

Two components of the ROE set describe the instantaneous center (xd, yd) of

the relative ellipse by the following relation

xd = 4x+
2ẏ

nc

yd = y − 2ẋ

nc

(E.15)

Evaluating Equation E.15 at epoch, it is immediately observed that xd and yd

are the parenthetical expressions in Equation E.14, and A2 conveniently collapses to

A2 =
√
x2
d + y2

d (E.16)

This implies that for the circular chief, the Virtual Chief parameter A2 is a

direct measurement of the 2-norm of the in-plane position vector from the chief to

the center of the relative ellipse.

E.4 Simplifying φ2

The expression for φ2 uses the same analytical functions as the expression for

A2. From Equation E.2,

φ2 = atan2(4A+ 2C,B − 2D) (E.17)
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Having already found that the expressions for 4A+2C and B−2D are equivalent

to xd and yd, the direct substitution is made such that

φ2 = atan2(xd, yd) (E.18)

This angle can be interpreted as the angle from the center of the relative ellipse

to the chief at epoch. The relation can be observed in Figure E.1

Figure E.1: φ2 Visualization

E.5 Simplifying zmax

A direct observation between the ROE parameter zmax and the Virtual Chief

yields duality. That is

zmax = zmax (E.19)
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E.6 Simplifying Ψ

The final Virtual Chief parameter to map and simplify is Ψ, the expression of

which is given by

Ψ = atan2(z,
ż

nc
) (E.20)

Multiplying the arguments Equation E.20 by unity in the form of (nc/nc), the

expression is equivalent to

Ψ = atan2(znc, ż) (E.21)

The expression in Equation E.21 is, by observation, equivalent to the out of

plane ROE parameter, also termed ψ.

E.7 Boundedness

For a bounded relative orbit, the Virtual Chief condition is

0 = 2A+ C

0 = A2sin(φ2)
(E.22)

This will hold valid for two constraints in ROE space

A2 = 0∀φ2 ∈ <

φ2 = ±kπ(k = 0, 1, 2, ...)∀A2 ∈ <
(E.23)

A value for φ2 that equates to an integer value of π must imply that (from

Equation E.18) xd is a zero value, while yd can take on any nonzero value (avoiding

the discontinuity). A zero value for A2 implies that x2
d = −y2

d, which will not old in
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real space unless both values are equivalently zero. The implication in ROE space

then follows as

φ2 = ±kπ(k = 0, 1, 2, ...)→ (xd, yd) = (0, yd)

A2 = 0→ (xd, yd) = (0, 0)∀φ2 6= 0 ∈ <
(E.24)

E.8 Summary

To summarize, allowing the ROE set composed of

[
ae xd yd β ψ zmax

]
(E.25)

to be denoted as Λ, then the mapping from Λ to Ξ for a circular chief is the following

A1 =
3

4
ae

A2 =
√
x2
d + y2

d

φ1 =
π

2
− β

φ2 = atan2(xd, yd)

Ψ = Ψ

zmax = zmax

(E.26)
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while the inverse transformation is given by

ae =
4

3
A1

β =
π

2
− φ1

zmax = zmax

Ψ = Ψ

xd =
A2tan(φ2)√
1 + tan2(φ2)

= A2 sin(φ2)

yd =
A2√

1 + tan2(φ2)
= A2 cos(φ2)

(E.27)

Worth noting is that the (xd, yd) transformation is a polar representation of the

in-plane motion as evident by Fig. E.1. The transformation exists in both the forward

and inverse directions without encountering singularities.
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Appendix F. Stationary Orbit Initialization

A popular idea in the field of relative satellite formation is that of formation main-

tenance. In this respect, the term stationary orbit applies to a relative orbit whose

trajectory repeats itself periodically. Derived equations of motion can be investigated

with respect to projected secular growth and constraints on initial conditions can be

made to hinder this. For example, in the HCW derivation the condition ẏ0 = −2nx0

is found by analyzing the y equation to remove secular terms. For unperturbed dy-

namics, this repeated orbit results from an equal periodicity condition, which in turn

results in equal semi-major axes between the chief and deputy. Maintaining equal

orbital periods between the chief and deputy in the perturbed case is a more dif-

ficult task in that the apsides rotation modifies the nominal periods of the orbits.

This section presents cases to bound the orbit using relative orbit elements for the

unperturbed elliptical chief, and the J2 perturbed circular chief.

F.0.0.1 Bounding the Unperturbed Elliptical Chief. The equal peri-

odicity constraint yields an equal semi-major axis constraint on the motion for a

bounded orbit (δa = 0). Using the linearized mapping from the Hill frame to orbital

element differences provided in [30] and [8], the expression for δa is given as

δa = 2α (2 + 3κ1 + 2κ2)x+ 2αv (1− 2κ1 + κ2) y +
2α2vp

Vt
ẋ+

2a

Vt
(1 + 2κ1 + κ2) ẏ

(F.1)
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The coefficients α, κ1, κ2, andv can be found in [30]. However, making the assumption

that the epoch condition is perigee, the coefficients and other parameters simplify to

Vr = 0

κ1 =
a

r

(p
r
− 1
)

κ2 = 0

Vt = rpn

√
(1 + e)

(1− e)3

α =
a

rp

rp = a (1− e)

(F.2)

which reduces the δa expression to

δa = 0

= 2
a

rp

(
2 + 3

a

rp

(
p

rp
− 1

))
x0 +

2a

Vt

(
1 + 2

a

rp

(
p

rp
− 1

))
ẏ0

(F.3)

Further simplification results in

0 = 2
1

1− e

(
2− 3e

1− e

)
x0 +

2a

Vt

(
1 +

2a

a (1− e)

(
p

a (1− e)
− 1

))
(F.4)

And this result further simplifies to

(2 + e)x0 +
ẏ0

n

√
(1− e)3

(1 + e)
(F.5)

Finally, Eq. F.5 can be written in general as

ẏ0

x0

= − n (2 + e)√
(1 + e) (1− e)3

(F.6)
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which is near exact to the constraint given in [22]. To convert this expression to ROE

space, we employ the Cartesian to ROE relation as

x0 = −ae0
2

cos β0 + xd0

ẏ0 = ae0n cos β0 −
3nxd0

2

(F.7)

Substituting the ROE expressions in Eq. F.6 and allowing ζ = − (2+e)√
(1+e)(1−e)3

ae0 cos β0 − 3xd0

2

−ae0

2
cos β0 + xd0

= ζ (F.8)

The following derives the relationship between ae0, xd0, and β0

ae0n cos β0 −
3nxd0

2
a = ζ

(
−ae0

2
cos β0 + xd0

)
ae0n cos β0 +

ζae0
2

= ζxd0 +
3nxd0

2

ae0

(
n cos β0 +

ζ cos β0

2

)
= xd0

(
ζ +

3n

2

) (F.9)

At perigee (β0 = 0) this becomes The final constraint for bounded motion becomes

ae0
xd0

=

(
ζ + 2n

2ζ + 3n

)
(F.10)

Note that for e = 0, this expression reduces to xd0 = 0 which is known from [39] to

produce a bounded orbit.

Figure F.1 shows the behavior of this boundedness requirement (here termed

the radial ratio) and ζ. In this example a chief of semi-major axis 8000 km is used to

evaluate the value of n. Instantly, it is observed that the radial ratio remains near the

same constant value, and that as the eccentricity approaches unity, the value for the

radial ratio approaches 0.5. This is easily observed by examining that as eccentricity

approaches unity, the ζ parameter approaches infinity, and the radial ratio from Eq.

F.10 approaches 0.5.
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Figure F.1: Boundedness Parameters as Functions of Chief Eccentricity with a Chief
Semi-major Axis of 8000 km

Also, Fig. F.2 provides a display of the radial ratio as the chief semi-major axis

is varied. The general trend is followed for each different value of the semi-major axis,

but the initial conditions require an increase in radial displacement.

F.0.0.2 Bounding the J2 Perturbed Circular Chief. In bounding the

relative trajectory of the circular chief perturbed by the J2 effect there are two possible

routes. In the Schweighart-Sedwick model [7], initial conditions are derived to avoid

secular drift in a purely linear sense. Another approach is applying Schaub’s method

for initializing J2 invariant orbits [30]. This study will determine expressions using

the Schweighart initial conditions.

The initial conditions given in Schweighart [37] to remove drift are

ẋ0 =
ng2

2c
y0

ẏ0 = −2cnx0

(F.11)
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Figure F.2: Radial Ratio at Perigee as a Function of Chief Eccentricity with Varying
Semi-major Axis

where the coefficients have been previously defined. The substitution for the ROEs

can be made into Eq. F.11. Focusing on the ẋ0 expression

ae0
2
n sin β0 =

ng2

2c
(ae0 sin β0 + yd0) (F.12)

Dividing Eq. F.12 by n, multiplying by 2c, and collecting ae0 sin β0 terms, the condi-

tion becomes

ae0 sin β0 =
g2

c+ g2
yd0 (F.13)

Now, focusing on the ẏ0 expression

ae0n cos β0 −
3nxd0

2
= −2cn

(
−ae0

2
cos β0 + xd0

)
(F.14)

Multiplying the right hand side of Eq. F.14 through, and collecting like terms, the

condition simplifies to

ae0 cos β0 =

(
3− 4c

2− 2c

)
xd0 (F.15)
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Squaring and summing the results of Eq. F.13 and Eq. F.15

(ae0 cos β0)2 + (ae0 sin β0)2 =

(
3− 4c

2− 2c

)2

x2
d0 +

(
g2

c+ g2

)2

y2
d0 (F.16)

Taking the square root of Eq. F.16,

√
(ae0 cos β0)2 + (ae0 sin β0)2 =

√(
3− 4c

2− 2c

)2

x2
d0 +

(
g2

c+ g2

)2

y2
d0 (F.17)

which directly implies the necessary condition to bound the relative trajectory

ae0 =
√
C1x2

d0 + C2y2
d0 (F.18)

where

C1 =

(
3− 4c

2− 2c

)2

C2 =

(
g2

c+ g2

)2
(F.19)

The relation given in the bounded expression shows a parabolic surface dependent on

the values for xd0 and yd0. A very interesting note is when these initial conditions are

used, the osculational translation of the relative trajectory follows a near 1.5×1 ellipse

with oscillations on very low order magnitude. The derivation of this is provided in

Appendix D.
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parameters of the motion.  Eccentricity effects are shown to induce severe time-variance to the system and 
introduce a level of mathematical abstraction with the current parameterization.  Perturbing J2 effects are shown to 
introduce periodic effects and compound the secular variations to the circular ROEs. 
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